In mathematics, the Eisenstein integers (named after Gotthold Eisenstein), occasionally also known as Eulerian integers (after Leonhard Euler), are the complex numbers of the form
where a and b are integers and
is a primitive (hence non-real) cube root of unity. The Eisenstein integers form a triangular lattice in the complex plane, in contrast with the Gaussian integers, which form a square lattice in the complex plane. The Eisenstein integers are a countably infinite set.
The Eisenstein integers form a commutative ring of algebraic integers in the algebraic number field — the third cyclotomic field. To see that the Eisenstein integers are algebraic integers note that each z = a + bω is a root of the monic polynomial
In particular, ω satisfies the equation
The product of two Eisenstein integers a + bω and c + dω is given explicitly by
The 2-norm of an Eisenstein integer is just its squared modulus, and is given by
which is clearly a positive ordinary (rational) integer.
Also, the complex conjugate of ω satisfies
The group of units in this ring is the cyclic group formed by the sixth roots of unity in the complex plane: the Eisenstein integers of norm 1.
The ring of Eisenstein integers forms a Euclidean domain whose norm N is given by the square modulus, as above:
A division algorithm, applied to any dividend and divisor , gives a quotient
and a remainder smaller than the divisor, satisfying:
Here are all Eisenstein integers. This algorithm implies the Euclidean algorithm, which proves Euclid's lemma and the unique factorization of Eisenstein integers into Eisenstein primes.
One division algorithm is as follows. First perform the division in the field of complex numbers, and write the quotient in terms of ω:
for rational . Then obtain the Eisenstein integer quotient by rounding the rational coefficients to the nearest integer:
Here may denote any of the standard rounding-to-integer functions.
The reason this satisfies , while the analogous procedure fails for most other quadratic integer rings, is as follows.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Dans une première partie, nous étudierons d’abord comment résoudre de manière très concrète un problème au moyen d’un algorithme, ce qui nous amènera dans un second temps à une des grandes questions d
Dans une première partie, nous étudierons d’abord comment résoudre de manière très concrète un problème au moyen d’un algorithme, ce qui nous amènera dans un second temps à une des grandes questions d
Le contenu de ce cours correspond à celui du cours d'Analyse I, comme il est enseigné pour les étudiantes et les étudiants de l'EPFL pendant leur premier semestre. Chaque chapitre du cours correspond
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
L'objectif de ce cours est d'introduire les étudiants à la pensée algorithmique, de les familiariser avec les fondamentaux de l'Informatique et de développer une première compétence en programmation (
The course introduces the paradigm of quantum computation in an axiomatic way. We introduce the notion of quantum bit, gates, circuits and we treat the most important quantum algorithms. We also touch
In number theory, a cyclotomic field is a number field obtained by adjoining a complex root of unity to Q, the field of rational numbers. Cyclotomic fields played a crucial role in the development of modern algebra and number theory because of their relation with Fermat's Last Theorem. It was in the process of his deep investigations of the arithmetic of these fields (for prime n) – and more precisely, because of the failure of unique factorization in their rings of integers – that Ernst Kummer first introduced the concept of an ideal number and proved his celebrated congruences.
In algebra and number theory, Euclid's lemma is a lemma that captures a fundamental property of prime numbers, namely: For example, if p = 19, a = 133, b = 143, then ab = 133 × 143 = 19019, and since this is divisible by 19, the lemma implies that one or both of 133 or 143 must be as well. In fact, 133 = 19 × 7. If the premise of the lemma does not hold, i.e., p is a composite number, its consequent may be either true or false. For example, in the case of p = 10, a = 4, b = 15, composite number 10 divides ab = 4 × 15 = 60, but 10 divides neither 4 nor 15.
In mathematics, an algebraic number field (or simply number field) is an extension field of the field of rational numbers such that the field extension has finite degree (and hence is an algebraic field extension). Thus is a field that contains and has finite dimension when considered as a vector space over . The study of algebraic number fields, and, more generally, of algebraic extensions of the field of rational numbers, is the central topic of algebraic number theory.
By juxtaposing ideas from fractal geometry and dynamical systems, Furstenberg proposed a series of conjectures in the late 1960's that explore the relationship between digit expansions with respect to multiplicatively independent bases. In this work, we in ...
We examine the moments of the number of lattice points in a fixed ball of volume V for lattices in Euclidean space which are modules over the ring of integers of a number field K. In particular, denoting by ωK the number of roots of unity in K, we ...
arXiv2023
We initiate the study of certain families of L-functions attached to characters of subgroups of higher-rank tori, and of their average at the central point. In particular, we evaluate the average of the values L( 2 1 , chi a )L( 21 , chi b ) for arbitrary ...