En mathématiques, un faisceau est un outil permettant de suivre systématiquement des données définies localement et rattachées aux ouverts d'un espace topologique. Les données peuvent être restreintes à des ouverts plus petits, et les données correspondantes à un ouvert sont équivalentes à l'ensemble des données compatibles correspondantes aux ouverts plus petits couvrant l'ouvert d'origine. Par exemple, de telles données peuvent consister en des anneaux de fonctions réelles continues ou lisses définies sur chaque ouvert. En géométrie, aussi bien d'ailleurs en géométrie algébrique qu'en géométrie différentielle, la notion de faisceau est une généralisation de celle d'ensemble des sections d'un fibré vectoriel. Dans ce cadre, la base du fibré est une variété algébrique ou une variété différentielle. Les faisceaux ont été introduits par Jean Leray en topologie algébrique lorsqu'il était en captivité durant la Seconde Guerre mondiale. Sous l'impulsion, notamment, d'Henri Cartan, de Jean-Pierre Serre et d'Alexandre Grothendieck (à qui on doit le terme préfaisceau), les faisceaux ont pris par la suite une importance considérable dans de nombreux domaines des mathématiques où l'on cherche à passer, pour un problème donné, d'une solution locale à une solution globale. Les obstructions à un tel passage s'étudient grâce à la cohomologie des faisceaux. Préfaisceau (théorie des catégories) De façon équivalente, on peut définir un préfaisceau comme un foncteur contravariant de la catégorie des ouverts de X (avec les inclusions comme morphismes) dans . Les préfaisceaux les plus courants sont à valeurs dans des catégories concrètes (catégories des ensembles, groupes, anneaux, espaces vectoriels, algèbres, modules, espaces topologiques, groupes topologiques, etc.). Dans ce cas, pour tous ouverts V ⊂ U, on note : et un élément s'appelle une section de au-dessus de U. On écrit au lieu de . L'exemple fondamental de préfaisceau est celui où les morphismes de restriction sont les restrictions usuelles de fonctions.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (11)
MATH-506: Topology IV.b - cohomology rings
Singular cohomology is defined by dualizing the singular chain complex for spaces. We will study its basic properties, see how it acquires a multiplicative structure and becomes a graded commutative a
MATH-658: Vanishing cycles and perverse sheaves
This course will explain the theory of vanishing cycles and perverse sheaves. We will see how the Hard Lefschetz theorem can be proved using perverse sheaves. If we have more time we will try to see t
MATH-510: Algebraic geometry II - schemes and sheaves
The aim of this course is to learn the basics of the modern scheme theoretic language of algebraic geometry.
Afficher plus
Séances de cours associées (39)
Opérations de cohomologie: Produits de coupe et Bockstein
Explore les produits de tasse, les homomorphismes Bockstein et l'algèbre Steenrod en cohomologie.
Structure de l'anneau gradué sur la cohomologie
Explore les propriétés associatives et commutatives du produit en cohomologie, en mettant l'accent sur les structures graduées.
Places Steenrod
Couvre le concept de Places Steenrod et leurs applications dans des opérations de cohomologie stables.
Afficher plus
Publications associées (39)

BPS invariants from p-adic integrals

Dimitri Stelio Wyss, Francesca Carocci, Giulio Orecchia

We define p-adic BPS or pBPS invariants for moduli spaces M-beta,M-chi of one-dimensional sheaves on del Pezzo and K3 surfaces by means of integration over a non-archimedean local field F. Our definition relies on a canonical measure mu can on the F-analyt ...
Cambridge Univ Press2024

Persistence and the Sheaf-Function Correspondence

Nicolas Michel Berkouk

The sheaf-function correspondence identifies the group of constructible functions on a real analytic manifold M with the Grothendieck group of constructible sheaves on M. When M is a finite dimensional real vector space, Kashiwara-Schapira have recently in ...
Cambridge2023

Gluing Non-unique Navier-Stokes Solutions

Maria Colombo

We construct non-unique Leray solutions of the forced Navier-Stokes equations in bounded domains via gluing methods. This demonstrates a certain locality and robustness of the non-uniqueness discovered by the authors in [1]. ...
London2023
Afficher plus
Concepts associés (74)
Cohomologie des faisceaux
Les groupes de cohomologie d'un faisceau de groupes abéliens sont les groupes de cohomologie du complexe de cochaines. Les groupes de cohomologie d'un faisceau de groupes abéliens sont les groupes de cohomologie du complexe de cochaines : où est une résolution injective du faisceau , et désigne le groupe abélien des sections globales de . A unique isomorphisme canonique près, ces groupes ne dépendent pas de la résolution injective choisie. Le zéroième groupe est canoniquement isomorphe à .
Site (mathématiques)
En théorie des catégories, une branche des mathématiques, une topologie de Grothendieck est une structure sur une catégorie permettant de voir certains objets de comme les ensembles ouverts d'un espace topologique. Une catégorie munie d'une topologie de Grothendieck est appelée un site. Une topologie de Grothendieck axiomatise la notion de recouvrement d'un espace topologique par des ouverts. Cela permet de généraliser la définition de faisceaux, et leur cohomologie, à un site quelconque.
Cohomology
In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed as a method of assigning richer algebraic invariants to a space than homology. Some versions of cohomology arise by dualizing the construction of homology. In other words, cochains are functions on the group of chains in homology theory.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.