The Lanczos algorithm is an iterative method devised by Cornelius Lanczos that is an adaptation of power methods to find the "most useful" (tending towards extreme highest/lowest) eigenvalues and eigenvectors of an Hermitian matrix, where is often but not necessarily much smaller than . Although computationally efficient in principle, the method as initially formulated was not useful, due to its numerical instability.
In 1970, Ojalvo and Newman showed how to make the method numerically stable and applied it to the solution of very large engineering structures subjected to dynamic loading. This was achieved using a method for purifying the Lanczos vectors (i.e. by repeatedly reorthogonalizing each newly generated vector with all previously generated ones) to any degree of accuracy, which when not performed, produced a series of vectors that were highly contaminated by those associated with the lowest natural frequencies.
In their original work, these authors also suggested how to select a starting vector (i.e. use a random-number generator to select each element of the starting vector) and suggested an empirically determined method for determining , the reduced number of vectors (i.e. it should be selected to be approximately 1.5 times the number of accurate eigenvalues desired). Soon thereafter their work was followed by Paige, who also provided an error analysis. In 1988, Ojalvo produced a more detailed history of this algorithm and an efficient eigenvalue error test.
Input a Hermitian matrix of size , and optionally a number of iterations (as default, let ).
Strictly speaking, the algorithm does not need access to the explicit matrix, but only a function that computes the product of the matrix by an arbitrary vector. This function is called at most times.
Output an matrix with orthonormal columns and a tridiagonal real symmetric matrix of size . If , then is unitary, and .
Warning The Lanczos iteration is prone to numerical instability. When executed in non-exact arithmetic, additional measures (as outlined in later sections) should be taken to ensure validity of the results.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course provides an overview of key advances in continuous optimization and statistical analysis for machine learning. We review recent learning formulations and models as well as their guarantees
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
This course prepares students to use modern computational methods and tools for solving problems in engineering and science.
In linear algebra, the order-r Krylov subspace generated by an n-by-n matrix A and a vector b of dimension n is the linear subspace spanned by the of b under the first r powers of A (starting from ), that is, The concept is named after Russian applied mathematician and naval engineer Alexei Krylov, who published a paper about it in 1931. Vectors are linearly independent until , and . Thus, denotes the maximal dimension of a Krylov subspace. The maximal dimension satisfies and . More exactly, , where is the minimal polynomial of .
In numerical analysis, one of the most important problems is designing efficient and stable algorithms for finding the eigenvalues of a matrix. These eigenvalue algorithms may also find eigenvectors. Eigenvalues and eigenvectors and Generalized eigenvector Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.
In mathematics, power iteration (also known as the power method) is an eigenvalue algorithm: given a diagonalizable matrix , the algorithm will produce a number , which is the greatest (in absolute value) eigenvalue of , and a nonzero vector , which is a corresponding eigenvector of , that is, . The algorithm is also known as the Von Mises iteration. Power iteration is a very simple algorithm, but it may converge slowly.
Explores linear regression in high dimensions and practical house price prediction from a dataset.
Explores proximal operator, gradient descent, and step-size strategies for risk function minimization.
Covers the calculation of eigenvalues and eigenvectors, emphasizing their significance and applications.
This work is concerned with the computation of the action of a matrix function f(A), such as the matrix exponential or the matrix square root, on a vector b. For a general matrix A, this can be done by computing the compression of A onto a suitable Krylov ...
For a high dimensional problem, a randomized Gram-Schmidt (RGS) algorithm is beneficial in computational costs as well as numerical stability. We apply this dimension reduction technique by random sketching to Krylov subspace methods, e.g. to the generaliz ...
In this thesis we will present and analyze randomized algorithms for numerical linear algebra problems. An important theme in this thesis is randomized low-rank approximation. In particular, we will study randomized low-rank approximation of matrix functio ...