In structural engineering, the flexibility method, also called the method of consistent deformations, is the traditional method for computing member forces and displacements in structural systems. Its modern version formulated in terms of the members' flexibility matrices also has the name the matrix force method due to its use of member forces as the primary unknowns.
Flexibility is the inverse of stiffness. For example, consider a spring that has Q and q as, respectively, its force and deformation:
The spring stiffness relation is Q = k q where k is the spring stiffness.
Its flexibility relation is q = f Q, where f is the spring flexibility.
Hence, f = 1/k.
A typical member flexibility relation has the following general form:
where
m = member number m.
= vector of member's characteristic deformations.
= member flexibility matrix which characterises the member's susceptibility to deform under forces.
= vector of member's independent characteristic forces, which are unknown internal forces. These independent forces give rise to all member-end forces by member equilibrium.
= vector of member's characteristic deformations caused by external effects (such as known forces and temperature changes) applied to the isolated, disconnected member (i.e. with ).
For a system composed of many members interconnected at points called nodes, the members' flexibility relations can be put together into a single matrix equation, dropping the superscript m:
where M is the total number of members' characteristic deformations or forces in the system.
Unlike the matrix stiffness method, where the members' stiffness relations can be readily integrated via nodal equilibrium and compatibility conditions, the present flexibility form of equation () poses serious difficulty. With member forces as the primary unknowns, the number of nodal equilibrium equations is insufficient for solution, in general—unless the system is statically determinate.
To resolve this difficulty, first we make use of the nodal equilibrium equations in order to reduce the number of independent unknown member forces.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours traite les principaux aspects de la conception et du dimensionnement des ponts en béton armé et précontraint. L'accent est mis sur les ponts poutres. Etude des aspects suivants : optimisation
As one of the methods of structural analysis, the direct stiffness method, also known as the matrix stiffness method, is particularly suited for computer-automated analysis of complex structures including the statically indeterminate type. It is a matrix method that makes use of the members' stiffness relations for computing member forces and displacements in structures. The direct stiffness method is the most common implementation of the finite element method (FEM).
The finite element method (FEM) is a powerful technique originally developed for numerical solution of complex problems in structural mechanics, and it remains the method of choice for complex systems. In the FEM, the structural system is modeled by a set of appropriate finite elements interconnected at discrete points called nodes. Elements may have physical properties such as thickness, coefficient of thermal expansion, density, Young's modulus, shear modulus and Poisson's ratio.
The finite element method (FEM) is a popular method for numerically solving differential equations arising in engineering and mathematical modeling. Typical problem areas of interest include the traditional fields of structural analysis, heat transfer, fluid flow, mass transport, and electromagnetic potential. The FEM is a general numerical method for solving partial differential equations in two or three space variables (i.e., some boundary value problems).
Explores the displacement stiffness method for torsional statically indeterminate problems in composite bars under torque.
Introduces the basics of the finite element method, including strong and weak formulations.
Explores static analysis of a rolling frame on a square bracket using virtual work principles and equilibrium equations.
Tensegrity structures have been widely utilized as lightweight structures due to their high stiffness-to-mass and strength-to-mass ratios. Minimal mass design of tensegrity structures subject to external loads and specific constraints (e.g., member yieldin ...
We consider the Allen-Cahn equation ?(t)u - ?u = u - u(3) with a rapidly mixing Gaussian field as initial condition. We show that provided that the amplitude of the initial condition is not too large, the equation generates fronts described by nodal sets o ...
Censuses are structured documents of great value for social and demographic history, which became widespread from the nineteenth century on. However, the plurality of formats and the natural variability of historical data make their extraction arduous and ...