In mathematics, the metaplectic group Mp2n is a double cover of the symplectic group Sp2n. It can be defined over either real or p-adic numbers. The construction covers more generally the case of an arbitrary local or finite field, and even the ring of adeles.
The metaplectic group has a particularly significant infinite-dimensional linear representation, the Weil representation. It was used by André Weil to give a representation-theoretic interpretation of theta functions, and is important in the theory of modular forms of half-integral weight and the theta correspondence.
The fundamental group of the symplectic Lie group Sp2n(R) is infinite cyclic, so it has a unique connected double cover, which is denoted Mp2n(R) and called the metaplectic group.
The metaplectic group Mp2(R) is not a matrix group: it has no faithful finite-dimensional representations. Therefore, the question of its explicit realization is nontrivial. It has faithful irreducible infinite-dimensional representations, such as the Weil representation described below.
It can be proved that if F is any local field other than C, then the symplectic group Sp2n(F) admits a unique perfect central extension with the kernel Z/2Z, the cyclic group of order 2, which is called the metaplectic group over F.
It serves as an algebraic replacement of the topological notion of a 2-fold cover used when F = R. The approach through the notion of central extension is useful even in the case of real metaplectic group, because it allows a description of the group operation via a certain cocycle.
In the case n = 1, the symplectic group coincides with the special linear group SL2(R). This group biholomorphically acts on the complex upper half-plane by fractional-linear transformations,
where
is a real 2-by-2 matrix with the unit determinant and z is in the upper half-plane, and this action can be used to explicitly construct the metaplectic cover of SL2(R).
The elements of the metaplectic group Mp2(R) are the pairs (g, ε), where and ε is a holomorphic function on the upper half-plane such that .
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Covers the Heisenberg group representation, including shifts, multiplications, and the Fourier transform, extending to finite fields and metaplectic groups.
In mathematics, a covering group of a topological group H is a covering space G of H such that G is a topological group and the covering map p : G → H is a continuous group homomorphism. The map p is called the covering homomorphism. A frequently occurring case is a double covering group, a topological double cover in which H has index 2 in G; examples include the spin groups, pin groups, and metaplectic groups.
In mathematics, a group extension is a general means of describing a group in terms of a particular normal subgroup and quotient group. If and are two groups, then is an extension of by if there is a short exact sequence If is an extension of by , then is a group, is a normal subgroup of and the quotient group is isomorphic to the group . Group extensions arise in the context of the extension problem, where the groups and are known and the properties of are to be determined.
In the field of representation theory in mathematics, a projective representation of a group G on a vector space V over a field F is a group homomorphism from G to the projective linear group where GL(V) is the general linear group of invertible linear transformations of V over F, and F∗ is the normal subgroup consisting of nonzero scalar multiples of the identity transformation (see Scalar transformation). In more concrete terms, a projective representation of is a collection of operators satisfying the homomorphism property up to a constant: for some constant .
The subject of this thesis lies in the intersection of differential geometry and functional analysis, a domain usually called global analysis. A central object in this work is the group Ds(M) of all orientation preserving diffeomorphisms of a compact manif ...