Summary
In statistics, a rank correlation is any of several statistics that measure an ordinal association—the relationship between rankings of different ordinal variables or different rankings of the same variable, where a "ranking" is the assignment of the ordering labels "first", "second", "third", etc. to different observations of a particular variable. A rank correlation coefficient measures the degree of similarity between two rankings, and can be used to assess the significance of the relation between them. For example, two common nonparametric methods of significance that use rank correlation are the Mann–Whitney U test and the Wilcoxon signed-rank test. If, for example, one variable is the identity of a college basketball program and another variable is the identity of a college football program, one could test for a relationship between the poll rankings of the two types of program: do colleges with a higher-ranked basketball program tend to have a higher-ranked football program? A rank correlation coefficient can measure that relationship, and the measure of significance of the rank correlation coefficient can show whether the measured relationship is small enough to likely be a coincidence. If there is only one variable, the identity of a college football program, but it is subject to two different poll rankings (say, one by coaches and one by sportswriters), then the similarity of the two different polls' rankings can be measured with a rank correlation coefficient. As another example, in a contingency table with low income, medium income, and high income in the row variable and educational level—no high school, high school, university—in the column variable), a rank correlation measures the relationship between income and educational level. Some of the more popular rank correlation statistics include Spearman's ρ Kendall's τ Goodman and Kruskal's γ Somers' D An increasing rank correlation coefficient implies increasing agreement between rankings.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (6)
FIN-417: Quantitative risk management
This course is an introduction to quantitative risk management that covers standard statistical methods, multivariate risk factor models, non-linear dependence structures (copula models), as well as p
MATH-444: Multivariate statistics
Multivariate statistics focusses on inferring the joint distributional properties of several random variables, seen as random vectors, with a main focus on uncovering their underlying dependence struc
COM-406: Foundations of Data Science
We discuss a set of topics that are important for the understanding of modern data science but that are typically not taught in an introductory ML course. In particular we discuss fundamental ideas an
Show more
Related lectures (37)
Dependence Measures: Rank Correlations
Covers rank correlations, tail dependence, and copula fitting methods.
Signal Representations
Covers the norm of a matrix, operator, singular values, and unitary matrices in linear algebra.
Dependence Concepts and Copulas
Explores dependence concepts, copulas, correlation fallacies, and rank correlations in statistics.
Show more
Related publications (124)
Related concepts (4)
Kendall rank correlation coefficient
In statistics, the Kendall rank correlation coefficient, commonly referred to as Kendall's τ coefficient (after the Greek letter τ, tau), is a statistic used to measure the ordinal association between two measured quantities. A τ test is a non-parametric hypothesis test for statistical dependence based on the τ coefficient. It is a measure of rank correlation: the similarity of the orderings of the data when ranked by each of the quantities.
Ordinal data
Ordinal data is a categorical, statistical data type where the variables have natural, ordered categories and the distances between the categories are not known. These data exist on an ordinal scale, one of four levels of measurement described by S. S. Stevens in 1946. The ordinal scale is distinguished from the nominal scale by having a ranking. It also differs from the interval scale and ratio scale by not having category widths that represent equal increments of the underlying attribute.
Spearman's rank correlation coefficient
In statistics, Spearman's rank correlation coefficient or Spearman's ρ, named after Charles Spearman and often denoted by the Greek letter (rho) or as , is a nonparametric measure of rank correlation (statistical dependence between the rankings of two variables). It assesses how well the relationship between two variables can be described using a monotonic function. The Spearman correlation between two variables is equal to the Pearson correlation between the rank values of those two variables; while Pearson's correlation assesses linear relationships, Spearman's correlation assesses monotonic relationships (whether linear or not).
Show more