En théorie des probabilités et en statistiques, la loi de Fisher ou encore loi de Fisher-Snedecor ou encore loi F de Snedecor est une loi de probabilité continue. Elle tire son nom des statisticiens Ronald Aylmer Fisher et George Snedecor. La loi de Fisher survient très fréquemment en tant que loi de la statistique de test lorsque l'hypothèse nulle est vraie, dans des tests statistiques, comme les tests du ratio de vraisemblance, dans les tests de Chow utilisés en économétrie, ou encore dans l'analyse de la variance (ANOVA) via le test de Fisher. Une variable aléatoire réelle distribuée selon la loi de Fisher peut être construite comme le quotient de deux variables aléatoires indépendantes, et , distribuées chacune selon une loi du χ2 et ajustées pour leurs nombres de degrés de liberté, respectivement et : La densité de probabilité d'une loi de Fisher, , est donnée par pour tout réel , où et sont des entiers positifs et est la fonction bêta. La fonction de répartition associée est : où est la fonction bêta incomplète régularisée. La loi binomiale est liée à la loi de Fisher par la propriété suivante: si X suit une loi binomiale de paramètres n et p, et si k est un entier compris entre 0 et n, alors où F suit une loi de Fischer de paramètres avec L'espérance, la variance valent respectivement pour et Une généralisation de la loi de Fisher est la . Si alors est distribuée selon une loi du χ2 ; La loi est équivalente à la loi T de Hotelling ; Si alors la loi inverse est aussi une loi de Fisher ; Si est distribuée selon une loi de Student alors ; Si est distribuée selon une loi normale alors ; Si et alors est distribuée selon une loi bêta; Si est le quantile d'ordre pour et que est le quantile d'ordre pour alors . thumb|Définition du centile d'une loi de Fisher-Snedecor.Le tableau suivant fournit les valeurs de certains quantiles de la loi de Fisher pour différents paramètres ν1 et ν2. Pour chaque paramètre, le quantile donné est tel que la probabilité pour qu'une variable suivant une loi de Fisher lui soit inférieur est de .

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (32)
COM-417: Advanced probability and applications
In this course, various aspects of probability theory are considered. The first part is devoted to the main theorems in the field (law of large numbers, central limit theorem, concentration inequaliti
MATH-131: Probability and statistics
Le cours présente les notions de base de la théorie des probabilités et de l'inférence statistique. L'accent est mis sur les concepts principaux ainsi que les méthodes les plus utilisées.
MATH-232: Probability and statistics (for IC)
A basic course in probability and statistics
Afficher plus
Publications associées (32)
Concepts associés (18)
Fonction bêta
thumb|Variations de la fonction bêta pour les valeurs positives de x et y En mathématiques, la fonction bêta est une des deux intégrales d'Euler, définie pour tous nombres complexes x et y de parties réelles strictement positives par : et éventuellement prolongée analytiquement à tout le plan complexe à l'exception des entiers négatifs. La fonction bêta a été étudiée par Euler et Legendre et doit son nom à Jacques Binet. Elle est en relation avec la fonction gamma.
Valeur p
vignette|redresse=1.5|Illustration de la valeur-p. X désigne la loi de probabilité de la statistique de test et z la valeur calculée de la statistique de test. Dans un test statistique, la valeur-p (en anglais p-value pour probability value), parfois aussi appelée p-valeur, est la probabilité pour un modèle statistique donné sous l'hypothèse nulle d'obtenir une valeur au moins aussi extrême que celle observée. L'usage de la valeur-p est courant dans de nombreux domaines de recherche comme la physique, la psychologie, l'économie et les sciences de la vie.
Fonction de Pearson
Les fonctions de Pearson ont été créées pour représenter des distributions unimodales. Il en existe douze. Elles ont été inventées par Karl Pearson à la fin du et au début du . Le système de Pearson a été originellement conçu afin de modéliser des observations visiblement asymétriques. Les méthodes pour ajuster un modèle théorique aux deux premiers cumulants ou moments de données observées : toute distribution peut être étendue directement une famille de distributions adaptée.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.