In Euclidean geometry, the medial triangle or midpoint triangle of a triangle △ABC is the triangle with vertices at the midpoints of the triangle's sides AB, AC, BC. It is the n = 3 case of the midpoint polygon of a polygon with n sides. The medial triangle is not the same thing as the median triangle, which is the triangle whose sides have the same lengths as the medians of △ABC.
Each side of the medial triangle is called a midsegment (or midline). In general, a midsegment of a triangle is a line segment which joins the midpoints of two sides of the triangle. It is parallel to the third side and has a length equal to half the length of the third side.
The medial triangle can also be viewed as the image of triangle △ABC transformed by a homothety centered at the centroid with ratio -1/2. Thus, the sides of the medial triangle are half and parallel to the corresponding sides of triangle ABC. Hence, the medial triangle is inversely similar and shares the same centroid and medians with triangle △ABC. It also follows from this that the perimeter of the medial triangle equals the semiperimeter of triangle △ABC, and that the area is one quarter of the area of triangle △ABC. Furthermore, the four triangles that the original triangle is subdivided into by the medial triangle are all mutually congruent by SSS, so their areas are equal and thus the area of each is 1/4 the area of the original triangle.
The orthocenter of the medial triangle coincides with the circumcenter of triangle △ABC. This fact provides a tool for proving collinearity of the circumcenter, centroid and orthocenter. The medial triangle is the pedal triangle of the circumcenter. The nine-point circle circumscribes the medial triangle, and so the nine-point center is the circumcenter of the medial triangle.
The Nagel point of the medial triangle is the incenter of its reference triangle.
A reference triangle's medial triangle is congruent to the triangle whose vertices are the midpoints between the reference triangle's orthocenter and its vertices.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
Ce cours entend exposer les fondements de la géométrie à un triple titre :
1/ de technique mathématique essentielle au processus de conception du projet,
2/ d'objet privilégié des logiciels de concept
Repetition of the basic concepts of quantum mechanics and main numerical algorithms used for practical implementions. Basic principles of electronic structure methods:Hartree-Fock, many body perturbat
Ce cours donne les connaissances fondamentales liées aux fonctions trigonométriques, logarithmiques et exponentielles. La présentation des concepts et des propositions est soutenue par une grande gamm
Ce cours donne les connaissances fondamentales liées aux fonctions trigonométriques, logarithmiques et exponentielles. La présentation des concepts et des propositions est soutenue par une grande gamm
In this note, we study certain sufficient conditions for a set of minimal klt pairs ( X, triangle) with kappa ( X, triangle) = dim( X ) - 1 to be bounded. ...
In geometry, a pedal triangle is obtained by projecting a point onto the sides of a triangle. More specifically, consider a triangle ABC, and a point P that is not one of the vertices A, B, C. Drop perpendiculars from P to the three sides of the triangle (these may need to be produced, i.e., extended). Label L, M, N the intersections of the lines from P with the sides BC, AC, AB. The pedal triangle is then LMN. If ABC is not an obtuse triangle, P is the orthocenter then the angles of LMN are 180°−2A, 180°−2B and 180°−2C.
In geometry, the trilinear coordinates x : y : z of a point relative to a given triangle describe the relative directed distances from the three sidelines of the triangle. Trilinear coordinates are an example of homogeneous coordinates. The ratio x : y is the ratio of the perpendicular distances from the point to the sides (extended if necessary) opposite vertices A and B respectively; the ratio y : z is the ratio of the perpendicular distances from the point to the sidelines opposite vertices B and C respectively; and likewise for z : x and vertices C and A.
In geometry, the semiperimeter of a polygon is half its perimeter. Although it has such a simple derivation from the perimeter, the semiperimeter appears frequently enough in formulas for triangles and other figures that it is given a separate name. When the semiperimeter occurs as part of a formula, it is typically denoted by the letter s.
Covers the concepts of local homeomorphisms and coverings in manifolds, emphasizing the conditions under which a map is considered a local homeomorphism or a covering.
It is proved that the total length of any set of countably many rectifiable curves whose union meets all straight lines that intersect the unit square U is at least 2.00002. This is the first improvement on the lower bound of 2 known since 1964. A similar ...
This journal club by Elisa Oricchio highlights two studies published in 2012, which used chromatin conformation capture methods to detect the formation of self-interacting chromatin regions, known as topologically associating domains (TADs). ...