Summary
In mathematics, pointwise convergence is one of various senses in which a sequence of functions can converge to a particular function. It is weaker than uniform convergence, to which it is often compared. Suppose that is a set and is a topological space, such as the real or complex numbers or a metric space, for example. A net or sequence of functions all having the same domain and codomain is said to converge pointwise to a given function often written as if (and only if) The function is said to be the pointwise limit function of the Sometimes, authors use the term bounded pointwise convergence when there is a constant such that . This concept is often contrasted with uniform convergence. To say that means that where is the common domain of and , and stands for the supremum. That is a stronger statement than the assertion of pointwise convergence: every uniformly convergent sequence is pointwise convergent, to the same limiting function, but some pointwise convergent sequences are not uniformly convergent. For example, if is a sequence of functions defined by then pointwise on the interval but not uniformly. The pointwise limit of a sequence of continuous functions may be a discontinuous function, but only if the convergence is not uniform. For example, takes the value when is an integer and when is not an integer, and so is discontinuous at every integer. The values of the functions need not be real numbers, but may be in any topological space, in order that the concept of pointwise convergence make sense. Uniform convergence, on the other hand, does not make sense for functions taking values in topological spaces generally, but makes sense for functions taking values in metric spaces, and, more generally, in uniform spaces. Characterizations of the category of topological spaces Let denote the set of all functions from some given set into some topological space As described in the article on , if certain conditions are met then it is possible to define a unique topology on a set in terms of what nets do and do not converge.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (1)
Related concepts (31)
Subspace topology
In topology and related areas of mathematics, a subspace of a topological space X is a subset S of X which is equipped with a topology induced from that of X called the subspace topology (or the relative topology, or the induced topology, or the trace topology). Given a topological space and a subset of , the subspace topology on is defined by That is, a subset of is open in the subspace topology if and only if it is the intersection of with an open set in .
Pointwise convergence
In mathematics, pointwise convergence is one of various senses in which a sequence of functions can converge to a particular function. It is weaker than uniform convergence, to which it is often compared. Suppose that is a set and is a topological space, such as the real or complex numbers or a metric space, for example. A net or sequence of functions all having the same domain and codomain is said to converge pointwise to a given function often written as if (and only if) The function is said to be the pointwise limit function of the Sometimes, authors use the term bounded pointwise convergence when there is a constant such that .
Limit (mathematics)
In mathematics, a limit is the value that a function (or sequence) approaches as the input (or index) approaches some value. Limits are essential to calculus and mathematical analysis, and are used to define continuity, derivatives, and integrals. The concept of a limit of a sequence is further generalized to the concept of a limit of a topological net, and is closely related to and direct limit in . In formulas, a limit of a function is usually written as (although a few authors use "Lt" instead of "lim") and is read as "the limit of f of x as x approaches c equals L".
Show more
Related courses (57)
MATH-100(a): Advanced analysis I
Nous étudions les concepts fondamentaux de l'analyse, le calcul différentiel et intégral de fonctions réelles d'une variable.
MATH-303: Measure and integration
On introduit la théorie abstraite des espaces de mesure et on traite rigoureusement la mesure de Lebesgue et ensuite l'intégrale de Lebesgue.
MATH-101(g): Analysis I
Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles d'une variable.
Show more
Related MOOCs (9)
Analyse I
Le contenu de ce cours correspond à celui du cours d'Analyse I, comme il est enseigné pour les étudiantes et les étudiants de l'EPFL pendant leur premier semestre. Chaque chapitre du cours correspond
Analyse I (partie 1) : Prélude, notions de base, les nombres réels
Concepts de base de l'analyse réelle et introduction aux nombres réels.
Show more