Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Technology forecasting attempts to predict the future characteristics of useful technological machines, procedures or techniques. Researchers create technology forecasts based on past experience and current technological developments. Like other forecasts, technology forecasting can be helpful for both public and private organizations to make smart decisions. By analyzing future opportunities and threats, the forecaster can improve decisions in order to achieve maximum benefits. Today, most countries are experiencing huge social and economic changes, which heavily rely on technology development. By analyzing these changes, government and economic institutions could make plans for future developments. However, not all of historical data can be used for technology forecasting, forecasters also need to adopt advanced technology and quantitative modeling from experts’ researches and conclusions. Technology forecasting has existed more than a century, but it developed to an established subject until World War II, because American government started to detect the technology development trend related to military area after the war. In 1945, the U.S. Army Air Forces created a report called Toward New Horizons, which surveyed the technology development and discussed the importance for future studies. The report is an indication for the beginning of modern technology forecasting. In the 1950s and 1960s, RAND Corporation developed the Delphi Technique and were widely accepted and used to make smart evaluation for the future. The applications of Delphi Technique are a turning point in the history of technology forecasting, because it became an efficient tool for knowledge building and decision-making, especially for social policy and public health issues. In the 1970s, private sector and government agencies out of military area widely adopted technology forecasting and helped to diversify the users and applications. As the developments of computing technology, advanced computer hardware and software facilitates the process of data sorting and data analysis.
Joseph Chadi Benoit Lemaitre, Pan Xu, Weitong Zhang, Yijin Wang, Wei Cao, Myungjin Kim, Shan Yu, Xinyi Li, Lei Gao, Yuxin Huang
Ekaterina Krymova, Nicola Parolini, Andrea Kraus, David Kraus, Daniel Lopez, Yijin Wang, Markus Scholz, Tao Sun