Invariant theory is a branch of abstract algebra dealing with actions of groups on algebraic varieties, such as vector spaces, from the point of view of their effect on functions. Classically, the theory dealt with the question of explicit description of polynomial functions that do not change, or are invariant, under the transformations from a given linear group. For example, if we consider the action of the special linear group SLn on the space of n by n matrices by left multiplication, then the determinant is an invariant of this action because the determinant of A X equals the determinant of X, when A is in SLn.
Let be a group, and a finite-dimensional vector space over a field (which in classical invariant theory was usually assumed to be the complex numbers). A representation of in is a group homomorphism , which induces a group action of on . If is the space of polynomial functions on , then the group action of on produces an action on by the following formula:
With this action it is natural to consider the subspace of all polynomial functions which are invariant under this group action, in other words the set of polynomials such that for all . This space of invariant polynomials is denoted .
First problem of invariant theory: Is a finitely generated algebra over ?
For example, if and the space of square matrices, and the action of on is given by left multiplication, then is isomorphic to a polynomial algebra in one variable, generated by the determinant. In other words, in this case, every invariant polynomial is a linear combination of powers of the determinant polynomial. So in this case, is finitely generated over .
If the answer is yes, then the next question is to find a minimal basis, and ask whether the module of polynomial relations between the basis elements (known as the syzygies) is finitely generated over .
Invariant theory of finite groups has intimate connections with Galois theory. One of the first major results was the main theorem on the symmetric functions that described the invariants of the symmetric group acting on the polynomial ring ] by permutations of the variables.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours entend exposer les fondements de la géométrie à un triple titre :
1/ de technique mathématique essentielle au processus de conception du projet,
2/ d'objet privilégié des logiciels de concept
In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures. Algebraic structures include groups, rings, fields, modules, vector spaces, lattices, and algebras over a field. The term abstract algebra was coined in the early 20th century to distinguish it from older parts of algebra, and more specifically from elementary algebra, the use of variables to represent numbers in computation and reasoning.
Representation theory is a branch of mathematics that studies abstract algebraic structures by representing their elements as linear transformations of vector spaces, and studies modules over these abstract algebraic structures. In essence, a representation makes an abstract algebraic object more concrete by describing its elements by matrices and their algebraic operations (for example, matrix addition, matrix multiplication).
James Joseph Sylvester (3 September 1814 – 15 March 1897) was an English mathematician. He made fundamental contributions to matrix theory, invariant theory, number theory, partition theory, and combinatorics. He played a leadership role in American mathematics in the later half of the 19th century as a professor at the Johns Hopkins University and as founder of the American Journal of Mathematics. At his death, he was a professor at Oxford University. James Joseph was born in London on 3 September 1814, the son of Abraham Joseph, a Jewish merchant.
The development of small-angle scattering tensor tomography has enabled the study of anisotropic nanostructures in a volume-resolved manner. It is of great value to have reconstruction methods that can handle many different nanostructural symmetries. For s ...
Let G be a finite subgroup of SU(4) such that its elements have age at most one. In the first part of this paper, we define K-theoretic stable pair invariants on a crepant resolution of the affine quotient C4/G, and conjecture a closed formula for their ge ...
The field of computational topology has developed many powerful tools to describe the shape of data, offering an alternative point of view from classical statistics. This results in a variety of complex structures that are not always directly amenable for ...