In mathematics, continuous symmetry is an intuitive idea corresponding to the concept of viewing some symmetries as motions, as opposed to discrete symmetry, e.g. reflection symmetry, which is invariant under a kind of flip from one state to another. However, a discrete symmetry can always be reinterpreted as a subset of some higher-dimensional continuous symmetry, e.g. reflection of a 2 dimensional object in 3 dimensional space can be achieved by continuously rotating that object 180 degrees across a non-parallel plane.
The notion of continuous symmetry has largely and successfully been formalised in the mathematical notions of topological group, Lie group and group action. For most practical purposes continuous symmetry is modelled by a group action of a topological group that preserves some structure. Particularly, let be a function, and G is a group that acts on X then a subgroup is a symmetry of f if for all .
The simplest motions follow a one-parameter subgroup of a Lie group, such as the Euclidean group of three-dimensional space. For example translation parallel to the x-axis by u units, as u varies, is a one-parameter group of motions. Rotation around the z-axis is also a one-parameter group.
Continuous symmetry has a basic role in Noether's theorem in theoretical physics, in the derivation of conservation laws from symmetry principles, specifically for continuous symmetries. The search for continuous symmetries only intensified with the further developments of quantum field theory.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Symmetries in quantum mechanics describe features of spacetime and particles which are unchanged under some transformation, in the context of quantum mechanics, relativistic quantum mechanics and quantum field theory, and with applications in the mathematical formulation of the standard model and condensed matter physics. In general, symmetry in physics, invariance, and conservation laws, are fundamentally important constraints for formulating physical theories and models.
In mathematics, a one-parameter group or one-parameter subgroup usually means a continuous group homomorphism from the real line (as an additive group) to some other topological group . If is injective then , the image, will be a subgroup of that is isomorphic to as an additive group. One-parameter groups were introduced by Sophus Lie in 1893 to define infinitesimal transformations. According to Lie, an infinitesimal transformation is an infinitely small transformation of the one-parameter group that it generates.
In theoretical physics, an invariant is an observable of a physical system which remains unchanged under some transformation. Invariance, as a broader term, also applies to the no change of form of physical laws under a transformation, and is closer in scope to the mathematical definition. Invariants of a system are deeply tied to the symmetries imposed by its environment. Invariance is an important concept in modern theoretical physics, and many theories are expressed in terms of their symmetries and invariants.
In this lecture, symmetry and conservation law are applied to derive wave functions for elementary particles. Relativistic wave functions are analysed and applied for massive and massless particles. D
Analysis of the temperature- and stimulus-dependent imaging data toward elucidation of the physical transformations is an ubiquitous problem in multiple fields. Here, temperature-induced phase transition in BaTiO3 is explored using the machine learning ana ...
An important feature of turbulent boundary layers are persistent large-scale coherent structures in the flow. Here, we use Dynamic Mode Decomposition (DMD), a data-driven technique designed to detect spatio-temporal coherence, to construct optimal low-dime ...
Understanding looping probabilities, including the particular case of ring closure or cyclization, of fluctuating polymers (e.g., DNA) is important in many applications in molecular biology and chemistry. In a continuum limit the configuration of a polymer ...