La fréquence propre d'un système est la fréquence à laquelle oscille ce système lorsqu'il est en évolution libre, c'est-à-dire sans force excitatrice extérieure ni forces dissipatives (frottements ou résistances par exemple). Cette notion est fondamentale pour comprendre les phénomènes d'excitation, d'oscillation et de résonance. Elle est largement utilisée dans tous les domaines de la physique et trouve des applications concrètes dans la conception des horloges, des instruments de musique et en génie parasismique. De la fréquence propre f on déduit la période propre T et la pulsation propre ω : La notion de fréquence propre est un cas extrêmement général d'étude d'un système autour d'une position d'équilibre stable. Si l'on étudie un système quelconque d'énergie potentielle dépendant d'un paramètre alors en linéarisant l'énergie autour d'une position stable , on obtient immédiatement un oscillateur harmonique : dont la pulsation d'oscillation alors appelée pulsation propre est donnée par (la fréquence étant donnée par ). Dans le cas d'un système amorti, la fréquence propre garde toute sa pertinence car c'est la fréquence pour laquelle les pertes sont minimales, on parlera alors de résonance. Le terme de fréquence "propre" vient de l'étude des systèmes d'équations linéaires pour lesquelles les modes propres fournissent une base naturelle des solutions du système. Dans le cas d'un système linéaire dépendant d'un nombre de paramètres, on pourrait montrer qu'il existe ainsi modes propres chacun associé à une fréquence propre particulière. Considérons un pendule constitué d'un balancier pouvant osciller librement autour d'un axe horizontal. Dans le cas de l'oscillateur idéal, il n'y a pas de frottement. On peut modéliser le pendule par une masse ponctuelle suspendue au bout d'un fil inextensible et de masse nulle (pendule simple). Les équations auxquelles on aboutit sont identiques dans leur forme mathématique et ce modèle est suffisant pour comprendre le principe d'une horloge à balancier.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.