In the philosophy of mathematics, the abstraction of actual infinity involves the acceptance (if the axiom of infinity is included) of infinite entities as given, actual and completed objects. These might include the set of natural numbers, extended real numbers, transfinite numbers, or even an infinite sequence of rational numbers. Actual infinity is to be contrasted with potential infinity, in which a non-terminating process (such as "add 1 to the previous number") produces a sequence with no last element, and where each individual result is finite and is achieved in a finite number of steps. As a result, potential infinity is often formalized using the concept of a limit.
Apeiron (cosmology)
The ancient Greek term for the potential or improper infinite was apeiron (unlimited or indefinite), in contrast to the actual or proper infinite aphorismenon. Apeiron stands opposed to that which has a peras (limit). These notions are today denoted by potentially infinite and actually infinite, respectively.
Anaximander (610–546 BC) held that the apeiron was the principle or main element composing all things. Clearly, the 'apeiron' was some sort of basic substance. Plato's notion of the apeiron is more abstract, having to do with indefinite variability. The main dialogues where Plato discusses the 'apeiron' are the late dialogues Parmenides and the Philebus.
Aristotle sums up the views of his predecessors on infinity as follows:
"Only the Pythagoreans place the infinite among the objects of sense (they do not regard number as separable from these), and assert that what is outside the heaven is infinite. Plato, on the other hand, holds that there is no body outside (the Forms are not outside because they are nowhere), yet that the infinite is present not only in the objects of sense but in the Forms also." (Aristotle)
The theme was brought forward by Aristotle's consideration of the apeiron—in the context of mathematics and physics (the study of nature):
"Infinity turns out to be the opposite of what people say it is.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Infinity is something which is boundless, endless, or larger than any natural number. It is often denoted by the infinity symbol . Since the time of the ancient Greeks, the philosophical nature of infinity was the subject of many discussions among philosophers. In the 17th century, with the introduction of the infinity symbol and the infinitesimal calculus, mathematicians began to work with infinite series and what some mathematicians (including l'Hôpital and Bernoulli) regarded as infinitely small quantities, but infinity continued to be associated with endless processes.
Finitism is a philosophy of mathematics that accepts the existence only of finite mathematical objects. It is best understood in comparison to the mainstream philosophy of mathematics where infinite mathematical objects (e.g., infinite sets) are accepted as legitimate. The main idea of finitistic mathematics is not accepting the existence of infinite objects such as infinite sets. While all natural numbers are accepted as existing, the set of all natural numbers is not considered to exist as a mathematical object.
The philosophy of mathematics is the branch of philosophy that studies the assumptions, foundations, and implications of mathematics. It aims to understand the nature and methods of mathematics, and find out the place of mathematics in people's lives. The logical and structural nature of mathematics makes this branch of philosophy broad and unique. The philosophy of mathematics has two major themes: mathematical realism and mathematical anti-realism. The origin of mathematics is of arguments and disagreements.
Calcul différentiel et intégral.
Eléments d'analyse complexe.
Dans ce cours, nous étudierons les notions fondamentales de l'analyse réelle, ainsi que le calcul différentiel et intégral pour les fonctions réelles d'une variable réelle.
Le cours étudie les concepts fondamentaux de l'analyse complexe et de l'analyse de Laplace en vue de leur utilisation
pour résoudre des problèmes pluridisciplinaires d'ingénierie scientifique.
It is well established that the O(N) Wilson-Fisher (WF) CFT sits at a kink of the numerical bounds from bootstrapping four point function of O(N) vector. Moving away from the WF kinks, there indeed exists another family of kinks (dubbed non-WF kinks) on th ...
In this thesis, we study interactions between algebraic and coalgebraic structures in infinity-categories (more precisely, in the quasicategorical model of (infinity, 1)-categories). We define a notion of a Hopf algebra H in an E-2-monoidal infinity-catego ...
3D reconstruction of deformable (or non-rigid) scenes from a set of monocular 2D image observations is a long-standing and actively researched area of computer vision and graphics. It is an ill-posed inverse problem, since-without additional prior assumpti ...