Infinithumb|∞ : le symbole infini. Le mot « infini » (-e, -s) est un adjectif servant à qualifier quelque chose qui n'a pas de limite en nombre ou en taille. Il vient du latin infīnītus, dérivé de fīnītus « limité » (avec in-, préfixe négatif), issu lui-même du verbe fīnĭo, fīnīre (« délimiter », mais aussi : « préciser », « déterminer », et intransitivement « finir »), et du nom fīnis (souvent au pluriel, fīnes : « bornes, limites d'un champ », « frontières d'un pays ») ; il signifie donc, littéralement « qui est sans borne », mais aussi « indéterminé » et « indéfini ».
Philosophie des mathématiquesLa philosophie des mathématiques est la branche de la philosophie des sciences qui tente de répondre aux interrogations sur les fondements des mathématiques ainsi que sur leur usage. On y croise des questions telles que : « les mathématiques sont-elles nécessaires ? », « pourquoi les mathématiques sont-elles utiles ou efficaces pour décrire la nature ? », « dans quel(s) sens, peut-on dire que les entités mathématiques existent ? » ou « pourquoi et comment peut-on dire qu'une proposition mathématique est vraie ? ».
Nombre transfinivignette|Le mathématicien George Cantor (1918). Les nombres transfinis sont des nombres exposés et étudiés par le mathématicien Georg Cantor. Se fondant sur ses résultats, il a introduit une sorte de hiérarchie dans l'infini, en développant la théorie des ensembles. Un nombre entier naturel peut être utilisé pour décrire la taille d'un ensemble fini, ou pour désigner la position d'un élément dans une suite. Ces deux utilisations correspondent aux notions de cardinal et d'ordinal respectivement.
ÉquipotenceEn mathématiques, l’équipotence est une relation entre ensembles, selon laquelle deux ensembles sont équivalents lorsqu'il existe une bijection entre eux. Cette notion permet de définir la cardinalité, c'est-à-dire le nombre d'éléments d'un ensemble, qu'il soit fini ou infini. La subpotence est une relation plus faible, satisfaite lorsqu'il existe une injection entre deux ensembles. Elle permet de définir une comparaison de taille entre les ensembles, sans présupposer la construction des nombres cardinaux.