In the philosophy of mathematics, the abstraction of actual infinity involves the acceptance (if the axiom of infinity is included) of infinite entities as given, actual and completed objects. These might include the set of natural numbers, extended real numbers, transfinite numbers, or even an infinite sequence of rational numbers. Actual infinity is to be contrasted with potential infinity, in which a non-terminating process (such as "add 1 to the previous number") produces a sequence with no last element, and where each individual result is finite and is achieved in a finite number of steps. As a result, potential infinity is often formalized using the concept of a limit.
Apeiron (cosmology)
The ancient Greek term for the potential or improper infinite was apeiron (unlimited or indefinite), in contrast to the actual or proper infinite aphorismenon. Apeiron stands opposed to that which has a peras (limit). These notions are today denoted by potentially infinite and actually infinite, respectively.
Anaximander (610–546 BC) held that the apeiron was the principle or main element composing all things. Clearly, the 'apeiron' was some sort of basic substance. Plato's notion of the apeiron is more abstract, having to do with indefinite variability. The main dialogues where Plato discusses the 'apeiron' are the late dialogues Parmenides and the Philebus.
Aristotle sums up the views of his predecessors on infinity as follows:
"Only the Pythagoreans place the infinite among the objects of sense (they do not regard number as separable from these), and assert that what is outside the heaven is infinite. Plato, on the other hand, holds that there is no body outside (the Forms are not outside because they are nowhere), yet that the infinite is present not only in the objects of sense but in the Forms also." (Aristotle)
The theme was brought forward by Aristotle's consideration of the apeiron—in the context of mathematics and physics (the study of nature):
"Infinity turns out to be the opposite of what people say it is.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
thumb|∞ : le symbole infini. Le mot « infini » (-e, -s) est un adjectif servant à qualifier quelque chose qui n'a pas de limite en nombre ou en taille. Il vient du latin infīnītus, dérivé de fīnītus « limité » (avec in-, préfixe négatif), issu lui-même du verbe fīnĭo, fīnīre (« délimiter », mais aussi : « préciser », « déterminer », et intransitivement « finir »), et du nom fīnis (souvent au pluriel, fīnes : « bornes, limites d'un champ », « frontières d'un pays ») ; il signifie donc, littéralement « qui est sans borne », mais aussi « indéterminé » et « indéfini ».
Le finitisme est une philosophie des mathématiques qui ne prend en considération que les objets mathématiques finis. On peut faire la comparaison avec la philosophie des mathématiques traditionnelle où les objets mathématiques infinis (par exemple, ensembles infinis) sont aussi légitimes que les autres. L'idée principale des mathématiques finitistes est le fait de ne pas accepter l'existence d'objets infinis, tels que des ensembles infinis.
La philosophie des mathématiques est la branche de la philosophie des sciences qui tente de répondre aux interrogations sur les fondements des mathématiques ainsi que sur leur usage. On y croise des questions telles que : « les mathématiques sont-elles nécessaires ? », « pourquoi les mathématiques sont-elles utiles ou efficaces pour décrire la nature ? », « dans quel(s) sens, peut-on dire que les entités mathématiques existent ? » ou « pourquoi et comment peut-on dire qu'une proposition mathématique est vraie ? ».
Calcul différentiel et intégral.
Eléments d'analyse complexe.
Dans ce cours, nous étudierons les notions fondamentales de l'analyse réelle, ainsi que le calcul différentiel et intégral pour les fonctions réelles d'une variable réelle.
Le cours étudie les concepts fondamentaux de l'analyse complexe et de l'analyse de Laplace en vue de leur utilisation
pour résoudre des problèmes pluridisciplinaires d'ingénierie scientifique.
3D reconstruction of deformable (or non-rigid) scenes from a set of monocular 2D image observations is a long-standing and actively researched area of computer vision and graphics. It is an ill-posed inverse problem, since-without additional prior assumpti ...
It is well established that the O(N) Wilson-Fisher (WF) CFT sits at a kink of the numerical bounds from bootstrapping four point function of O(N) vector. Moving away from the WF kinks, there indeed exists another family of kinks (dubbed non-WF kinks) on th ...
In this thesis, we study interactions between algebraic and coalgebraic structures in infinity-categories (more precisely, in the quasicategorical model of (infinity, 1)-categories). We define a notion of a Hopf algebra H in an E-2-monoidal infinity-catego ...