In mathematics and especially differential geometry, a Kähler manifold is a manifold with three mutually compatible structures: a complex structure, a Riemannian structure, and a symplectic structure. The concept was first studied by Jan Arnoldus Schouten and David van Dantzig in 1930, and then introduced by Erich Kähler in 1933. The terminology has been fixed by André Weil. Kähler geometry refers to the study of Kähler manifolds, their geometry and topology, as well as the study of structures and constructions that can be performed on Kähler manifolds, such as the existence of special connections like Hermitian Yang–Mills connections, or special metrics such as Kähler–Einstein metrics.
Every smooth complex projective variety is a Kähler manifold. Hodge theory is a central part of algebraic geometry, proved using Kähler metrics.
Since Kähler manifolds are equipped with several compatible structures, they can be described from different points of view:
A Kähler manifold is a symplectic manifold (X, ω) equipped with an integrable almost-complex structure J which is compatible with the symplectic form ω, meaning that the bilinear form
on the tangent space of X at each point is symmetric and positive definite (and hence a Riemannian metric on X).
A Kähler manifold is a complex manifold X with a Hermitian metric h whose associated 2-form ω is closed. In more detail, h gives a positive definite Hermitian form on the tangent space TX at each point of X, and the 2-form ω is defined by
for tangent vectors u and v (where i is the complex number ). For a Kähler manifold X, the Kähler form ω is a real closed (1,1)-form. A Kähler manifold can also be viewed as a Riemannian manifold, with the Riemannian metric g defined by
Equivalently, a Kähler manifold X is a Hermitian manifold of complex dimension n such that for every point p of X, there is a holomorphic coordinate chart around p in which the metric agrees with the standard metric on Cn to order 2 near p.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).
We develop, analyze and implement numerical algorithms to solve optimization problems of the form: min f(x) where x is a point on a smooth manifold. To this end, we first study differential and Rieman
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
Shing-Tung Yau (jaʊ; ; born April 4, 1949) is a Chinese-American mathematician and the William Caspar Graustein Professor of Mathematics at Harvard University. In April 2022, Yau announced retirement from Harvard to become Chair Professor of mathematics at Tsinghua University. Yau was born in Shantou, China, moved to Hong Kong at a young age, and to the United States in 1969. He was awarded the Fields Medal in 1982, in recognition of his contributions to partial differential equations, the Calabi conjecture, the positive energy theorem, and the Monge–Ampère equation.
In algebraic geometry, a branch of mathematics, Serre duality is a duality for the coherent sheaf cohomology of algebraic varieties, proved by Jean-Pierre Serre. The basic version applies to vector bundles on a smooth projective variety, but Alexander Grothendieck found wide generalizations, for example to singular varieties. On an n-dimensional variety, the theorem says that a cohomology group is the dual space of another one, . Serre duality is the analog for coherent sheaf cohomology of Poincaré duality in topology, with the canonical line bundle replacing the orientation sheaf.
Sir William Vallance Douglas Hodge (hɒdʒ; 17 June 1903 – 7 July 1975) was a British mathematician, specifically a geometer. His discovery of far-reaching topological relations between algebraic geometry and differential geometry—an area now called Hodge theory and pertaining more generally to Kähler manifolds—has been a major influence on subsequent work in geometry.
In algorithms for solving optimization problems constrained to a smooth manifold, retractions are a well-established tool to ensure that the iterates stay on the manifold. More recently, it has been demonstrated that retractions are a useful concept for ot ...
Springer2024
, ,
We propose a structured prediction approach for robot imitation learning from demonstrations. Among various tools for robot imitation learning, supervised learning has been observed to have a prominent role. Structured prediction is a form of supervised le ...
London2023
E. E. Floyd showed in 1973 that there exist only two nontrivial cobor-dism classes that contain manifolds with three cells, and that they lie in dimen-sions 10 and 5. We prove that there is an action of the cyclic group C2 on the 10-dimensional Floyd manif ...