thumb|Pour chaque sommet, la liste d'adjacence est représentée en jaune. En algorithmique, une liste d'adjacence est une structure de données utilisée pour représenter un graphe. Cette représentation est particulièrement adaptée aux graphes creux (c'est-à-dire peu denses), contrairement à la matrice d'adjacence adaptée aux graphes denses. La liste d'adjacence d'un graphe non orienté, est la liste des voisins de chaque sommet. Celle d'un graphe orienté est typiquement, pour chaque sommet, la liste de nœuds à la tête de chaque arête ayant le sommet comme queue. C'est une représentation relativement compacte lorsqu'il y a peu d'arêtes (graphe creux), puisque la liste globale contient 2m éléments, où m est le nombre d'arêtes. Une représentation par liste d'adjacence d'un graphe associe, à chaque sommet du graphe, la collection de ses voisins, comme sommets ou comme arêtes. Il existe de nombreuses variations de ce principe de base, qui diffèrent par des détails dans la mise en œuvre de l'association entre les sommets et ces collections, et de l'implémentation de ces collections elles-mêmes, selon qu'elles comprennent, comme élément de base, les deux sommets des arêtes, ou les arêtes comme objet, ou seulement les sommets voisins, ou encore dans le choix des types d'objets utilisés pour représenter les sommets et la liste de arêtes. Les représentations de graphes par liste d'adjacence privilégient une approche plus centrée sur les sommets. Il existe de nombreuses implémentations possibles de listes d'adjacence : L'implémentation en Python préconisée par Guido van Rossum utilise une table de hachage pour associer, à chaque sommet du graphe, la table des sommets adjacents. Dans cette représentation, un sommet peut être représenté par tout objet qui peut être haché. Il n'y a pas de représentation explicite des arêtes en tant qu'objets. Le livre de Cormen et al. propose une implémentation dans laquelle les sommets sont représentés par les numéros d'index.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (10)
ME-427: Networked control systems
This course offers an introduction to control systems using communication networks for interfacing sensors, actuators, controllers, and processes. Challenges due to network non-idealities and opportun
MATH-448: Statistical analysis of network data
A first course in statistical network analysis and applications.
CS-401: Applied data analysis
This course teaches the basic techniques, methodologies, and practical skills required to draw meaningful insights from a variety of data, with the help of the most acclaimed software tools in the dat
Afficher plus
Séances de cours associées (60)
Arbre de recherche binaire optimal
Explore les arbres de recherche binaires optimaux pour minimiser le coût de recherche attendu et discute de la représentation des graphiques à l'aide de matrices et de listes d'adjacence.
Modèles graphiques : Représentation des distributions probabilistes
Couvre les modèles graphiques pour les distributions probabilistes à l'aide de graphiques, de nœuds et de bords.
Systèmes de contrôle en réseau : Algorithmes consensuels dans les diagrammes
Explore les algorithmes de consensus dans les diagrammes, en se concentrant sur des scénarios où le diagramme n'est pas fortement connecté.
Afficher plus
Publications associées (39)

Data-Driven Reactive Power Optimization of Distribution Networks via Graph Attention Networks

Wenlong Liao, Qi Liu, Zhe Yang

Reactive power optimization of distribution networks is traditionally addressed by physical model based methods, which often lead to locally optimal solutions and require heavy online inference time consumption. To improve the quality of the solution and r ...
State Grid Electric Power Research Inst2024

GAP: Differentially Private Graph Neural Networks with Aggregation Perturbation

Daniel Gatica-Perez, Sina Sajadmanesh

In this paper, we study the problem of learning Graph Neural Networks (GNNs) with Differential Privacy (DP). We propose a novel differentially private GNN based on Aggregation Perturbation (GAP), which adds stochastic noise to the GNN's aggregation functio ...
Berkeley2023

Dispatch-aware Optimal Planning of Active Distribution Networks including Energy Storage Systems

Ji Hyun Yi

The thesis develops a planning framework for ADNs to achieve their dispatchability by means of ESS allocation while ensuring a reliable and secure operation of ADNs. Second, the framework is extended to include grid reinforcements and ESSs planning. Finall ...
EPFL2023
Afficher plus
Concepts associés (9)
Degré (théorie des graphes)
thumb|Un graphe non orienté où on a indiqué le degré de chaque sommet sur ce sommet. Dans ce graphe, le degré maximal est et le degré minimal est . En mathématiques, et plus particulièrement en théorie des graphes, le degré (ou valence) d'un sommet d'un graphe est le nombre de liens (arêtes ou arcs) reliant ce sommet, avec les boucles comptées deux fois. Le degré d'un sommet est noté . Dans le cas d'un graphe orienté, on parle aussi du degré entrant d'un sommet , c'est-à-dire le nombre d'arcs dirigés vers le sommet , et du degré sortant de ce sommet , c'est-à-dire le nombre d'arcs sortant de .
Graphe (type abstrait)
thumb|upright=1.3|Un graphe orienté, dont les arcs et certains sommets sont « valués » par des couleurs. En informatique, et plus particulièrement en génie logiciel, le type abstrait graphe est la spécification formelle des données qui définissent l'objet mathématique graphe et de l'ensemble des opérations qu'on peut effectuer sur elles. On qualifie d'« abstrait » ce type de données car il correspond à un cahier des charges qu'une structure de données concrète doit ensuite implémenter.
Voisinage (théorie des graphes)
En théorie des graphes on dit que deux sommets d'un graphe non-orienté sont voisins ou adjacents s'ils sont reliés par une arête. Le voisinage d'un sommet peut désigner l'ensemble de ses sommets voisins ou bien un sous-graphe associé, par exemple le sous-graphe induit. Dans un graphe orienté, on emploie généralement le terme de prédécesseur ou de successeur. Dans un graphe non orienté , le voisinage d'un sommet , souvent noté (N pour neighbourhood) peut désigner plusieurs choses : L'ensemble des sommets voisins : Les sous-graphe de induit par les sommets précédents, avec ou sans selon les versions.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.