In complex analysis, a branch of mathematics, Morera's theorem, named after Giacinto Morera, gives an important criterion for proving that a function is holomorphic.
Morera's theorem states that a continuous, complex-valued function f defined on an open set D in the complex plane that satisfies
for every closed piecewise C1 curve in D must be holomorphic on D.
The assumption of Morera's theorem is equivalent to f locally having an antiderivative on D.
The converse of the theorem is not true in general. A holomorphic function need not possess an antiderivative on its domain, unless one imposes additional assumptions. The converse does hold e.g. if the domain is simply connected; this is Cauchy's integral theorem, stating that the line integral of a holomorphic function along a closed curve is zero.
The standard counterexample is the function f(z) = 1/z, which is holomorphic on C − {0}. On any simply connected neighborhood U in C − {0}, 1/z has an antiderivative defined by L(z) = ln(r) + iθ, where z = reiθ. Because of the ambiguity of θ up to the addition of any integer multiple of 2pi, any continuous choice of θ on U will suffice to define an antiderivative of 1/z on U. (It is the fact that θ cannot be defined continuously on a simple closed curve containing the origin in its interior that is the root of why 1/z has no antiderivative on its entire domain C − {0}.) And because the derivative of an additive constant is 0, any constant may be added to the antiderivative and the result will still be an antiderivative of 1/z.
In a certain sense, the 1/z counterexample is universal: For every analytic function that has no antiderivative on its domain, the reason for this is that 1/z itself does not have an antiderivative on C − {0}.
There is a relatively elementary proof of the theorem. One constructs an anti-derivative for f explicitly.
Without loss of generality, it can be assumed that D is connected. Fix a point z0 in D, and for any , let be a piecewise C1 curve such that and .
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In complex analysis, a complex-valued function of a complex variable : is said to be holomorphic at a point if it is differentiable at every point within some open disk centered at , and is said to be analytic at if in some open disk centered at it can be expanded as a convergent power series (this implies that the radius of convergence is positive). One of the most important theorems of complex analysis is that holomorphic functions are analytic and vice versa.
In mathematics, more specifically complex analysis, the residue is a complex number proportional to the contour integral of a meromorphic function along a path enclosing one of its singularities. (More generally, residues can be calculated for any function that is holomorphic except at the discrete points {ak}k, even if some of them are essential singularities.) Residues can be computed quite easily and, once known, allow the determination of general contour integrals via the residue theorem.
In mathematics, a line integral is an integral where the function to be integrated is evaluated along a curve. The terms path integral, curve integral, and curvilinear integral are also used; contour integral is used as well, although that is typically reserved for line integrals in the complex plane. The function to be integrated may be a scalar field or a vector field. The value of the line integral is the sum of values of the field at all points on the curve, weighted by some scalar function on the curve (commonly arc length or, for a vector field, the scalar product of the vector field with a differential vector in the curve).
Calcul différentiel et intégral.
Eléments d'analyse complexe.
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
The monstrous moonshine is an unexpected connection between the Monster group and modular functions. In the course we will explain the statement of the conjecture and study the main ideas and concepts
We establish exponential convergence of the hp-version of isogeometric analysis for second order elliptic problems in one spacial dimension. Specifically, we construct, for functions which are piecewise analytic with a finite number of algebraic singularit ...