In algebraic topology, singular homology refers to the study of a certain set of algebraic invariants of a topological space X, the so-called homology groups Intuitively, singular homology counts, for each dimension n, the n-dimensional holes of a space. Singular homology is a particular example of a homology theory, which has now grown to be a rather broad collection of theories. Of the various theories, it is perhaps one of the simpler ones to understand, being built on fairly concrete constructions (see also the related theory simplicial homology).
In brief, singular homology is constructed by taking maps of the standard n-simplex to a topological space, and composing them into formal sums, called singular chains. The boundary operation – mapping each n-dimensional simplex to its (n−1)-dimensional boundary – induces the singular chain complex. The singular homology is then the homology of the chain complex. The resulting homology groups are the same for all homotopy equivalent spaces, which is the reason for their study. These constructions can be applied to all topological spaces, and so singular homology is expressible as a functor from the to the category of graded abelian groups.
A singular n-simplex in a topological space X is a continuous function (also called a map) from the standard n-simplex to X, written This map need not be injective, and there can be non-equivalent singular simplices with the same image in X.
The boundary of denoted as is defined to be the formal sum of the singular (n − 1)-simplices represented by the restriction of to the faces of the standard n-simplex, with an alternating sign to take orientation into account. (A formal sum is an element of the free abelian group on the simplices. The basis for the group is the infinite set of all possible singular simplices. The group operation is "addition" and the sum of simplex a with simplex b is usually simply designated a + b, but a + a = 2a and so on. Every simplex a has a negative −a.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course will provide an introduction to model category theory, which is an abstract framework for generalizing homotopy theory beyond topological spaces and continuous maps. We will study numerous
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
Homology is one of the most important tools to study topological spaces and it plays an important role in many fields of mathematics. The aim of this course is to introduce this notion, understand its
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an -dimensional manifold, or -manifold for short, is a topological space with the property that each point has a neighborhood that is homeomorphic to an open subset of -dimensional Euclidean space. One-dimensional manifolds include lines and circles, but not lemniscates. Two-dimensional manifolds are also called surfaces. Examples include the plane, the sphere, and the torus, and also the Klein bottle and real projective plane.
In algebraic topology, a -chain is a formal linear combination of the -cells in a cell complex. In simplicial complexes (respectively, cubical complexes), -chains are combinations of -simplices (respectively, -cubes), but not necessarily connected. Chains are used in homology; the elements of a homology group are equivalence classes of chains. For a simplicial complex , the group of -chains of is given by: where are singular -simplices of . Note that any element in not necessary to be a connected simplicial complex.
In mathematics, especially in homological algebra and algebraic topology, a Künneth theorem, also called a Künneth formula, is a statement relating the homology of two objects to the homology of their product. The classical statement of the Künneth theorem relates the singular homology of two topological spaces X and Y and their product space . In the simplest possible case the relationship is that of a tensor product, but for applications it is very often necessary to apply certain tools of homological algebra to express the answer.
In this thesis, we apply cochain complexes as an algebraic model of space in a diverse range of mathematical and scientific settings. We begin with an algebraic-discrete Morse theory model of auto-encoding cochain data, connecting the homotopy theory of d ...
EPFL2024
Let h be a connective homology theory. We construct a functorial relative plus construction as a Bousfield localization functor in the category of maps of spaces. It allows us to associate to a pair (X,H), consisting of a connected space X and an hperfect ...
2023
,
Shadows for bicategories, defined by Ponto, provide a useful framework that generalizes classical and topological Hochschild homology. In this paper, we define Hochschild-type invariants for monoids in a symmetric monoidal, simplicial model category V, as ...