In mathematics, the axiom of dependent choice, denoted by , is a weak form of the axiom of choice () that is still sufficient to develop most of real analysis. It was introduced by Paul Bernays in a 1942 article that explores which set-theoretic axioms are needed to develop analysis.
A homogeneous relation on is called a total relation if for every there exists some such that is true.
The axiom of dependent choice can be stated as follows:
For every nonempty set and every total relation on there exists a sequence in such that
for all
In fact, x0 may be taken to be any desired element of X. (To see this, apply the axiom as stated above to the set of finite sequences that start with x0 and in which subsequent terms are in relation , together with the total relation on this set of the second sequence being obtained from the first by appending a single term.)
If the set above is restricted to be the set of all real numbers, then the resulting axiom is denoted by
Even without such an axiom, for any , one can use ordinary mathematical induction to form the first terms of such a sequence.
The axiom of dependent choice says that we can form a whole (countably infinite) sequence this way.
The axiom is the fragment of that is required to show the existence of a sequence constructed by transfinite recursion of countable length, if it is necessary to make a choice at each step and if some of those choices cannot be made independently of previous choices.
Over (Zermelo–Fraenkel set theory without the axiom of choice), is equivalent to the for complete metric spaces.
It is also equivalent over to the Löwenheim–Skolem theorem.
is also equivalent over to the statement that every pruned tree with levels has a branch (proof below).
Furthermore, is equivalent to a weakened form of Zorn's lemma; specifically is equivalent to the statement that any partial order such that every well-ordered chain is finite and bounded, must have a maximal element.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course introduces the foundations of information retrieval, data mining and knowledge bases, which constitute the foundations of today's Web-based distributed information systems.
Explores the existence of mathematical objects, truth of propositions, and knowledge about them, covering Platonism, Intuitionism, Structuralism, Nominalism, Logicism, and Formalism.
In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals (first, second, nth, etc.) aimed to extend enumeration to infinite sets. A finite set can be enumerated by successively labeling each element with the least natural number that has not been previously used. To extend this process to various infinite sets, ordinal numbers are defined more generally as linearly ordered labels that include the natural numbers and have the property that every set of ordinals has a least element (this is needed for giving a meaning to "the least unused element").
The axiom of countable choice or axiom of denumerable choice, denoted ACω, is an axiom of set theory that states that every countable collection of non-empty sets must have a choice function. That is, given a function A with domain N (where N denotes the set of natural numbers) such that A(n) is a non-empty set for every n ∈ N, there exists a function f with domain N such that f(n) ∈ A(n) for every n ∈ N. The axiom of countable choice (ACω) is strictly weaker than the axiom of dependent choice (DC), which in turn is weaker than the axiom of choice (AC).
Zorn's lemma, also known as the Kuratowski–Zorn lemma, is a proposition of set theory. It states that a partially ordered set containing upper bounds for every chain (that is, every totally ordered subset) necessarily contains at least one maximal element. The lemma was proved (assuming the axiom of choice) by Kazimierz Kuratowski in 1922 and independently by Max Zorn in 1935.
We develop a framework to construct moduli spaces of Q-Gorenstein pairs. To do so, we fix certain invariants; these choices are encoded in the notion of Q-stable pair. We show that these choices give a proper moduli space with projective coarse moduli spac ...
Providence2024
The need to maintain and expand hydraulic structures is a major challenge for the coming energy transition, especially in Western countries. One technique already widespread allowing to meet these issues consists in the use of geomembranes to overcome prob ...
2023
Solidification is a phase transformation of utmost importance in material science, for it largely controls materials' microstructure on which a wide range of mechanical properties depends. Almost every human artifact undergoes a transformation that leads t ...