In theoretical physics and mathematical physics, analytical mechanics, or theoretical mechanics is a collection of closely related alternative formulations of classical mechanics. It was developed by many scientists and mathematicians during the 18th century and onward, after Newtonian mechanics. Since Newtonian mechanics considers vector quantities of motion, particularly accelerations, momenta, forces, of the constituents of the system, an alternative name for the mechanics governed by Newton's laws and Euler's laws is vectorial mechanics.
By contrast, analytical mechanics uses scalar properties of motion representing the system as a whole—usually its total kinetic energy and potential energy—not Newton's vectorial forces of individual particles. A scalar is a quantity, whereas a vector is represented by quantity and direction. The equations of motion are derived from the scalar quantity by some underlying principle about the scalar's variation.
Analytical mechanics takes advantage of a system's constraints to solve problems. The constraints limit the degrees of freedom the system can have, and can be used to reduce the number of coordinates needed to solve for the motion. The formalism is well suited to arbitrary choices of coordinates, known in the context as generalized coordinates. The kinetic and potential energies of the system are expressed using these generalized coordinates or momenta, and the equations of motion can be readily set up, thus analytical mechanics allows numerous mechanical problems to be solved with greater efficiency than fully vectorial methods. It does not always work for non-conservative forces or dissipative forces like friction, in which case one may revert to Newtonian mechanics.
Two dominant branches of analytical mechanics are Lagrangian mechanics (using generalized coordinates and corresponding generalized velocities in configuration space) and Hamiltonian mechanics (using coordinates and corresponding momenta in phase space).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Présentation des méthodes de la mécanique analytique (équations de Lagrange et de Hamilton) et introduction aux notions de modes normaux et de stabilité.
Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
In physics, Lagrangian mechanics is a formulation of classical mechanics founded on the stationary-action principle (also known as the principle of least action). It was introduced by the Italian-French mathematician and astronomer Joseph-Louis Lagrange in his 1788 work, Mécanique analytique. Lagrangian mechanics describes a mechanical system as a pair consisting of a configuration space and a smooth function within that space called a Lagrangian. For many systems, where and are the kinetic and potential energy of the system, respectively.
In the calculus of variations and classical mechanics, the Euler–Lagrange equations are a system of second-order ordinary differential equations whose solutions are stationary points of the given action functional. The equations were discovered in the 1750s by Swiss mathematician Leonhard Euler and Italian mathematician Joseph-Louis Lagrange. Because a differentiable functional is stationary at its local extrema, the Euler–Lagrange equation is useful for solving optimization problems in which, given some functional, one seeks the function minimizing or maximizing it.
Classical mechanics is a physical theory describing the motion of macroscopic objects, from projectiles to parts of machinery and astronomical objects, such as spacecraft, planets, stars, and galaxies. For objects governed by classical mechanics, if the present state is known, it is possible to predict how it will move in the future (determinism), and how it has moved in the past (reversibility). The "classical" in "classical mechanics" does not refer classical antiquity, as it might in, say, classical architecture.
Explores central motion, focusing on moment of force, kinetic moment, and properties of motion, including the formula of Binet and historical vs. modern approaches.
Gas diffusion electrodes (GDEs) help to reduce transport limitations in devices for electrochemical CO2 reduction. Homogenized modeling of such devices requires input of morphological characteristics and effective transport properties of the porous structu ...
By operating with the Scale Relativity Theory in the dynamics of complex systems, we can achieve a description of these complex systems through a holographic-type perspective. Then, gauge invariances of a Riccati-type become functional in complex system dy ...
UNIV POLITEHNICA BUCHAREST, SCI BULL2023
, , ,
The flywheel is a widespread mechanical component used for the storage of kinetic energy and angular momentum. It typically consists of cylindrical inertia rotating about its axis on rolling bearings, which involves undesired friction, lubrication, and wea ...