In the mathematical field of graph theory, a spanning tree T of an undirected graph G is a subgraph that is a tree which includes all of the vertices of G. In general, a graph may have several spanning trees, but a graph that is not connected will not contain a spanning tree (see about spanning forests below). If all of the edges of G are also edges of a spanning tree T of G, then G is a tree and is identical to T (that is, a tree has a unique spanning tree and it is itself).
Several pathfinding algorithms, including Dijkstra's algorithm and the A* search algorithm, internally build a spanning tree as an intermediate step in solving the problem.
In order to minimize the cost of power networks, wiring connections, piping, automatic speech recognition, etc., people often use algorithms that gradually build a spanning tree (or many such trees) as intermediate steps in the process of finding the minimum spanning tree.
The Internet and many other telecommunications networks have transmission links that connect nodes together in a mesh topology that includes some loops.
In order to avoid bridge loops and routing loops, many routing protocols designed for such networks—including the Spanning Tree Protocol, Open Shortest Path First, Link-state routing protocol, Augmented tree-based routing, etc.—require each router to remember a spanning tree.
A special kind of spanning tree, the Xuong tree, is used in topological graph theory to find graph embeddings with maximum genus. A Xuong tree is a spanning tree such that, in the remaining graph, the number of connected components with an odd number of edges is as small as possible. A Xuong tree and an associated maximum-genus embedding can be found in polynomial time.
A tree is a connected undirected graph with no cycles. It is a spanning tree of a graph G if it spans G (that is, it includes every vertex of G) and is a subgraph of G (every edge in the tree belongs to G). A spanning tree of a connected graph G can also be defined as a maximal set of edges of G that contains no cycle, or as a minimal set of edges that connect all vertices.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In graph theory, a bridge, isthmus, cut-edge, or cut arc is an edge of a graph whose deletion increases the graph's number of connected components. Equivalently, an edge is a bridge if and only if it is not contained in any cycle. For a connected graph, a bridge can uniquely determine a cut. A graph is said to be bridgeless or isthmus-free if it contains no bridges. This type of bridge should be distinguished from an unrelated meaning of "bridge" in graph theory, a subgraph separated from the rest of the graph by a specified subset of vertices; see bridge.
In graph theory, a branch of mathematics, the circuit rank, cyclomatic number, cycle rank, or nullity of an undirected graph is the minimum number of edges that must be removed from the graph to break all its cycles, making it into a tree or forest. It is equal to the number of independent cycles in the graph (the size of a cycle basis). Unlike the corresponding feedback arc set problem for directed graphs, the circuit rank r is easily computed using the formula where m is the number of edges in the given graph, n is the number of vertices, and c is the number of connected components.
In the mathematical field of graph theory, Kirchhoff's theorem or Kirchhoff's matrix tree theorem named after Gustav Kirchhoff is a theorem about the number of spanning trees in a graph, showing that this number can be computed in polynomial time from the determinant of a submatrix of the Laplacian matrix of the graph; specifically, the number is equal to any cofactor of the Laplacian matrix. Kirchhoff's theorem is a generalization of Cayley's formula which provides the number of spanning trees in a complete graph.
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
Lattice models consist of (typically random) objects living on a periodic graph. We will study some models that are mathematically interesting and representative of physical phenomena seen in the real
A first graduate course in algorithms, this course assumes minimal background, but moves rapidly. The objective is to learn the main techniques of algorithm analysis and design, while building a reper
In this thesis, we explore techniques for addressing the communication bottleneck in data-parallel distributed training of deep learning models. We investigate algorithms that either reduce the size of the messages that are exchanged between workers, or th ...
As modern machine learning continues to achieve unprecedented benchmarks, the resource demands to train these advanced models grow drastically. This has led to a paradigm shift towards distributed training. However, the presence of adversariesâwhether ma ...
EPFL2023
In this master thesis, multi-agent reinforcement learning is used to teach robots to build a self-supporting structure connecting two points. To accomplish this task, a physics simulator is first designed using linear programming. Then, the task of buildin ...