In algebra, a module homomorphism is a function between modules that preserves the module structures. Explicitly, if M and N are left modules over a ring R, then a function is called an R-module homomorphism or an R-linear map if for any x, y in M and r in R,
In other words, f is a group homomorphism (for the underlying additive groups) that commutes with scalar multiplication. If M, N are right R-modules, then the second condition is replaced with
The of the zero element under f is called the kernel of f. The set of all module homomorphisms from M to N is denoted by . It is an abelian group (under pointwise addition) but is not necessarily a module unless R is commutative.
The composition of module homomorphisms is again a module homomorphism, and the identity map on a module is a module homomorphism. Thus, all the (say left) modules together with all the module homomorphisms between them form the .
A module homomorphism is called a module isomorphism if it admits an inverse homomorphism; in particular, it is a bijection. Conversely, one can show a bijective module homomorphism is an isomorphism; i.e., the inverse is a module homomorphism. In particular, a module homomorphism is an isomorphism if and only if it is an isomorphism between the underlying abelian groups.
The isomorphism theorems hold for module homomorphisms.
A module homomorphism from a module M to itself is called an endomorphism and an isomorphism from M to itself an automorphism. One writes for the set of all endomorphisms of a module M. It is not only an abelian group but is also a ring with multiplication given by function composition, called the endomorphism ring of M. The group of units of this ring is the automorphism group of M.
Schur's lemma says that a homomorphism between simple modules (modules with no non-trivial submodules) must be either zero or an isomorphism. In particular, the endomorphism ring of a simple module is a division ring.
In the language of the , an injective homomorphism is also called a monomorphism and a surjective homomorphism an epimorphism.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Singular cohomology is defined by dualizing the singular chain complex for spaces. We will study its basic properties, see how it acquires a multiplicative structure and becomes a graded commutative a
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
In algebra, given a ring R, the category of left modules over R is the whose are all left modules over R and whose morphisms are all module homomorphisms between left R-modules. For example, when R is the ring of integers Z, it is the same thing as the . The category of right modules is defined in a similar way. One can also define the category of bimodules over a ring R but that category is equivalent to the category of left (or right) modules over the enveloping algebra of R (or over the opposite of that).
In mathematics, the endomorphisms of an abelian group X form a ring. This ring is called the endomorphism ring of X, denoted by End(X); the set of all homomorphisms of X into itself. Addition of endomorphisms arises naturally in a pointwise manner and multiplication via endomorphism composition. Using these operations, the set of endomorphisms of an abelian group forms a (unital) ring, with the zero map as additive identity and the identity map as multiplicative identity.
In mathematics, the annihilator of a subset S of a module over a ring is the ideal formed by the elements of the ring that give always zero when multiplied by each element of S. Over an integral domain, a module that has a nonzero annihilator is a torsion module, and a finitely generated torsion module has a nonzero annihilator. The above definition applies also in the case noncommutative rings, where the left annihilator of a left module is a left ideal, and the right-annihilator, of a right module is a right ideal.
Explores the cross product in cohomology, covering its properties and applications in homotopy.
,
Let K be an algebraically closed field of characteristic zero, and let G be a connected reductive algebraic group over K. We address the problem of classifying triples (G, H, V ), where H is a proper connected subgroup of G, and V is a finitedimensional ir ...
A correspondence functor is a functor from the category of finite sets and correspondences to the category of k-modules, where k is a commutative ring. By means of a suitably defined duality, new correspondence functors are constructed, having remarkable p ...
Because building-integrated photovoltaic (BIPV) modules are fully integrated into a building envelope, the back of the module can be exposed to little or no ventilation, resulting in increased operating temperatures. As the temperature increases, the perfo ...