In geometry, the Beltrami–Klein model, also called the projective model, Klein disk model, and the Cayley–Klein model, is a model of hyperbolic geometry in which points are represented by the points in the interior of the unit disk (or n-dimensional unit ball) and lines are represented by the chords, straight line segments with ideal endpoints on the boundary sphere.
The Beltrami–Klein model is named after the Italian geometer Eugenio Beltrami and the German Felix Klein while "Cayley" in Cayley–Klein model refers to the English geometer Arthur Cayley.
The Beltrami–Klein model is analogous to the gnomonic projection of spherical geometry, in that geodesics (great circles in spherical geometry) are mapped to straight lines.
This model is not conformal, meaning that angles and circles are distorted, whereas the Poincaré disk model preserves these.
In this model, lines and segments are straight Euclidean segments, whereas in the Poincaré disk model, lines are arcs that meet the boundary orthogonally.
Cayley–Klein metric
This model made its first appearance for hyperbolic geometry in two memoirs of Eugenio Beltrami published in 1868, first for dimension n = 2 and then for general n, these essays proved the equiconsistency of hyperbolic geometry with ordinary Euclidean geometry.
The papers of Beltrami remained little noticed until recently and the model was named after Klein ("The Klein disk model"). This happened as follows. In 1859 Arthur Cayley used the cross-ratio definition of angle due to Laguerre to show how Euclidean geometry could be defined using projective geometry. His definition of distance later became known as the Cayley metric.
In 1869, the young (twenty-year-old) Felix Klein became acquainted with Cayley's work. He recalled that in 1870 he gave a talk on the work of Cayley at the seminar of Weierstrass and he wrote:
"I finished with a question whether there might exist a connection between the ideas of Cayley and Lobachevsky. I was given the answer that these two systems were conceptually widely separated.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours entend exposer les fondements de la géométrie à un triple titre :
1/ de technique mathématique essentielle au processus de conception du projet,
2/ d'objet privilégié des logiciels de concept
This course is an introduction to the non-perturbative bootstrap approach to Conformal Field Theory and to the Gauge/Gravity duality, emphasizing the fruitful interplay between these two ideas.
In mathematics, the differential geometry of surfaces deals with the differential geometry of smooth surfaces with various additional structures, most often, a Riemannian metric. Surfaces have been extensively studied from various perspectives: extrinsically, relating to their embedding in Euclidean space and intrinsically, reflecting their properties determined solely by the distance within the surface as measured along curves on the surface.
In hyperbolic geometry, a hypercycle, hypercircle or equidistant curve is a curve whose points have the same orthogonal distance from a given straight line (its axis). Given a straight line L and a point P not on L, one can construct a hypercycle by taking all points Q on the same side of L as P, with perpendicular distance to L equal to that of P. The line L is called the axis, center, or base line of the hypercycle. The lines perpendicular to L, which are also perpendicular to the hypercycle, are called the normals of the hypercycle.
In hyperbolic geometry, a horocycle (), sometimes called an oricycle, oricircle, or limit circle, is a curve whose normal or perpendicular geodesics all converge asymptotically in the same direction. It is the two-dimensional case of a horosphere (or orisphere). The centre of a horocycle is the ideal point where all normal geodesics asymptotically converge. Two horocycles who have the same centre are concentric. Although it appears as if two concentric horocycles cannot have the same length or curvature, in fact any two horocycles are congruent.
We prove that the real cohomology of semi-simple Lie groups admits boundary values, which are measurable cocycles on the Furstenberg boundary. This generalises known invariants such as the Maslov index on Shilov boundaries, the Euler class on projective sp ...
Previous studies on the modelling of coupled thermo-hydro-mechanical (THM) processes in bentonite-based engineered barrier systems (EBSs) showed the sensitivity of the output quantities to changes in the input parameters. To investigate the effects of unce ...
We outline the construction of compatible B-splines on 3D surfaces that satisfy the continuity requirements for electromagnetic scattering analysis with the boundary element method (method of moments). Our approach makes use of Non-Uniform Rational B-splin ...