In materials science, a Bingham plastic is a viscoplastic material that behaves as a rigid body at low stresses but flows as a viscous fluid at high stress. It is named after Eugene C. Bingham who proposed its mathematical form.
It is used as a common mathematical model of mud flow in drilling engineering, and in the handling of slurries. A common example is toothpaste, which will not be extruded until a certain pressure is applied to the tube. It is then pushed out as a relatively coherent plug.
Figure 1 shows a graph of the behaviour of an ordinary viscous (or Newtonian) fluid in red, for example in a pipe. If the pressure at one end of a pipe is increased this produces a stress on the fluid tending to make it move (called the shear stress) and the volumetric flow rate increases proportionally. However, for a Bingham Plastic fluid (in blue), stress can be applied but it will not flow until a certain value, the yield stress, is reached. Beyond this point the flow rate increases steadily with increasing shear stress. This is roughly the way in which Bingham presented his observation, in an experimental study of paints. These properties allow a Bingham plastic to have a textured surface with peaks and ridges instead of a featureless surface like a Newtonian fluid.
Figure 2 shows the way in which it is normally presented currently. The graph shows shear stress on the vertical axis and shear rate on the horizontal one. (Volumetric flow rate depends on the size of the pipe, shear rate is a measure of how the velocity changes with distance. It is proportional to flow rate, but does not depend on pipe size.) As before, the Newtonian fluid flows and gives a shear rate for any finite value of shear stress. However, the Bingham plastic again does not exhibit any shear rate (no flow and thus no velocity) until a certain stress is achieved. For the Newtonian fluid the slope of this line is the viscosity, which is the only parameter needed to describe its flow.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The concept of Shell balances, the Navier-Stokes equations and generalized differential balances equations for heat and mass transport are given. These relations are applied to model systems. Integral
Dans ce cours, les outils qui permettent de décrire les matériaux non pas au niveau atomique mais au niveau d'un continuum sont présentés. Les tenseurs des contraintes et des déformations, les lois de
Ce cours est une introduction à la rhéologie des solides viscoélastiques linéaires, aux phénomènes d'écoulements des fluides, et aux méthodes utilisées en rhéologie. Les fluides Newtoniens ou non, la
The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. Viscosity is defined scientifically as a force multiplied by a time divided by an area. Thus its SI units are newton-seconds per square metre, or pascal-seconds. Viscosity quantifies the internal frictional force between adjacent layers of fluid that are in relative motion.
Thixotropy is a time-dependent shear thinning property. Certain gels or fluids that are thick or viscous under static conditions will flow (become thinner, less viscous) over time when shaken, agitated, shear-stressed, or otherwise stressed (time-dependent viscosity). They then take a fixed time to return to a more viscous state. Some non-Newtonian pseudoplastic fluids show a time-dependent change in viscosity; the longer the fluid undergoes shear stress, the lower its viscosity.
In materials science and continuum mechanics, viscoelasticity is the property of materials that exhibit both viscous and elastic characteristics when undergoing deformation. Viscous materials, like water, resist shear flow and strain linearly with time when a stress is applied. Elastic materials strain when stretched and immediately return to their original state once the stress is removed. Viscoelastic materials have elements of both of these properties and, as such, exhibit time-dependent strain.
In this paper, transient granular flows are examined both numerically and experimentally. Simulations are performed using the continuous three-dimensional (3-D) granular model introduced in Daviet & Bertails-Descoubes (ACM Trans. Graph., vol. 35, no. 4, 20 ...
The subsidence occurring in the city of Tuzla in Bosnia and Herzegovina (B&H) is an important issue which has caused several damages in the past decades. This phenomena is related to the massive extraction of salt and the presence of salt caverns below the ...
2023
, , , , , ,
Impedance pumps are simple designs that allow the generation or amplification of flow. They are fluid-filled systems based on flexible tubing connected to tubing with different impedances. A periodic off-center compression of the flexible tubing causes the ...