In topology and related branches of mathematics, a normal space is a topological space X that satisfies Axiom T4: every two disjoint closed sets of X have disjoint open neighborhoods. A normal Hausdorff space is also called a T4 space. These conditions are examples of separation axioms and their further strengthenings define completely normal Hausdorff spaces, or T5 spaces, and perfectly normal Hausdorff spaces, or T6 spaces. A topological space X is a normal space if, given any disjoint closed sets E and F, there are neighbourhoods U of E and V of F that are also disjoint. More intuitively, this condition says that E and F can be separated by neighbourhoods. A T4 space is a T1 space X that is normal; this is equivalent to X being normal and Hausdorff. A completely normal space, or , is a topological space X such that every subspace of X with subspace topology is a normal space. It turns out that X is completely normal if and only if every two separated sets can be separated by neighbourhoods. Also, X is completely normal if and only if every open subset of X is normal with the subspace topology. A T5 space, or completely T4 space, is a completely normal T1 space X, which implies that X is Hausdorff; equivalently, every subspace of X must be a T4 space. A perfectly normal space is a topological space in which every two disjoint closed sets and can be precisely separated by a function, in the sense that there is a continuous function from to the interval such that and . This is a stronger separation property than normality, as by Urysohn's lemma disjoint closed sets in a normal space can be separated by a function, in the sense of and , but not precisely separated in general. It turns out that X is perfectly normal if and only if X is normal and every closed set is a Gδ set. Equivalently, X is perfectly normal if and only if every closed set is the zero set of a continuous function. The equivalence between these three characterizations is called Vedenissoff's theorem.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.