Summary
In abstract algebra, the Weyl algebra is the ring of differential operators with polynomial coefficients (in one variable), namely expressions of the form More precisely, let F be the underlying field, and let F[X] be the ring of polynomials in one variable, X, with coefficients in F. Then each fi lies in F[X]. ∂X is the derivative with respect to X. The algebra is generated by X and ∂X. The Weyl algebra is an example of a simple ring that is not a matrix ring over a division ring. It is also a noncommutative example of a domain, and an example of an Ore extension. The Weyl algebra is isomorphic to the quotient of the free algebra on two generators, X and Y, by the ideal generated by the element The Weyl algebra is the first in an infinite family of algebras, also known as Weyl algebras. The n-th Weyl algebra, An, is the ring of differential operators with polynomial coefficients in n variables. It is generated by Xi and ∂Xi, i = 1, ..., n. Weyl algebras are named after Hermann Weyl, who introduced them to study the Heisenberg uncertainty principle in quantum mechanics. It is a quotient of the universal enveloping algebra of the Heisenberg algebra, the Lie algebra of the Heisenberg group, by setting the central element of the Heisenberg algebra (namely [X,Y]) equal to the unit of the universal enveloping algebra (called 1 above). The Weyl algebra is also referred to as the symplectic Clifford algebra. Weyl algebras represent the same structure for symplectic bilinear forms that Clifford algebras represent for non-degenerate symmetric bilinear forms. One may give an abstract construction of the algebras An in terms of generators and relations. Start with an abstract vector space V (of dimension 2n) equipped with a symplectic form ω. Define the Weyl algebra W(V) to be where T(V) is the tensor algebra on V, and the notation means "the ideal generated by". In other words, W(V) is the algebra generated by V subject only to the relation vu − uv = ω(v, u). Then, W(V) is isomorphic to An via the choice of a Darboux basis for ω.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.