The intestinal mucosal barrier, also referred to as intestinal barrier, refers to the property of the intestinal mucosa that ensures adequate containment of undesirable luminal contents within the intestine while preserving the ability to absorb nutrients. The separation it provides between the body and the gut prevents the uncontrolled translocation of luminal contents into the body proper. Its role in protecting the mucosal tissues and circulatory system from exposure to pro-inflammatory molecules, such as microorganisms, toxins, and antigens is vital for the maintenance of health and well-being. Intestinal mucosal barrier dysfunction has been implicated in numerous health conditions such as: food allergies, microbial infections, irritable bowel syndrome, inflammatory bowel disease, celiac disease, metabolic syndrome, non-alcoholic fatty liver disease, diabetes, and septic shock.
The intestinal mucosal barrier is a heterogeneous entity composed of physical, biochemical, and immune elements elaborated by the intestinal mucosa. The central component is the intestinal epithelial layer, which provides physical separation between the lumen and the body. The secretion of various molecules into the lumen reinforces the barrier function on the extra-epithelial side, while a variety of immune cells provide additional protection below the epithelial layer.
Mucus forms a layer (or layers, in the case of the colon) that separates the bulk of the luminal contents from the intestinal epithelium. The mucus consists of a highly glycosylated hydrated gel formed by mucin molecules that are secreted by goblet cells. The mucus prevents large particles from contacting the epithelial cell layer while allowing small molecules to pass. The mucus also facilitates passage of the luminal contents along the length of the intestines, protects the epithelial cells from digestive enzymes, and prevents the direct contact of microorganisms with the epithelial layer.
The intestinal epithelium is the foremost component of the intestinal mucosal barrier.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Le but est de connaitre et comprendre le fonctionnement des systèmes cardiovasculaire, urinaire, respiratoire, digestif, ainsi que du métabolisme de base et sa régulation afin de déveloper une réflect
The course will deliver basic knowledge on the principles of food fermentation and enzyme technology. The course will also present benefits that food biotechnology can bring in terms of Nutrition & He
The gut–brain axis is the two-way biochemical signaling that takes place between the gastrointestinal tract (GI tract) and the central nervous system (CNS). The term "gut–brain axis" is occasionally used to refer to the role of the gut microbiota in the interplay as well. The "microbiota–gut–brain (MGB or BGM) axis" explicitly includes the role of gut microbiota in the biochemical signaling events that take place between the GI tract and the CNS.
Inflammatory bowel disease (IBD) is a group of inflammatory conditions of the colon and small intestine, Crohn's disease and ulcerative colitis (UC) being the principal types. Crohn's disease affects the small intestine and large intestine, as well as the mouth, esophagus, stomach and the anus, whereas ulcerative colitis primarily affects the colon and the rectum. In spite of Crohn's and UC being very different diseases, both may present with any of the following symptoms: abdominal pain, diarrhea, rectal bleeding, severe internal cramps/muscle spasms in the region of the pelvis and weight loss.
Gut microbiota, gut microbiome, or gut flora, are the microorganisms, including bacteria, archaea, fungi, and viruses, that live in the digestive tracts of animals. The gastrointestinal metagenome is the aggregate of all the genomes of the gut microbiota. The gut is the main location of the human microbiome. The gut microbiota has broad impacts, including effects on colonization, resistance to pathogens, maintaining the intestinal epithelium, metabolizing dietary and pharmaceutical compounds, controlling immune function, and even behavior through the gut–brain axis.
Covers the importance of human embryology for careers in biology, medicine, and health sciences, focusing on the development of key organs and anatomical structures.
Explores the function of the digestive system, covering colon movements, fluid balance, acid production, secretions, and regulation of digestive processes.
The present invention generally relates to the field of intestinal health, disorders associated with aberrant microbiota and/or archaea-deficiency, and early-life immune system development. The present invention more specifically relates to M. smithii and ...
2023
, , ,
Background Braak's hypothesis states that sporadic Parkinson's disease (PD) follows a specific progression of pathology from the peripheral to the central nervous system, and this progression can be monitored by detecting the accumulation of alpha-Synuclei ...
In this thesis, we explored on-chip high-resolution imaging of the fate of intestinal bacteria and bacterial products in Caenorhabditis elegans (C. elegans). In the first part, we carried out high-resolution z-stack fluorescent imaging of Red Fluorescent P ...