The Faraday effect or Faraday rotation, sometimes referred to as the magneto-optic Faraday effect (MOFE), is a physical magneto-optical phenomenon. The Faraday effect causes a polarization rotation which is proportional to the projection of the magnetic field along the direction of the light propagation. Formally, it is a special case of gyroelectromagnetism obtained when the dielectric permittivity tensor is diagonal. This effect occurs in most optically transparent dielectric materials (including liquids) under the influence of magnetic fields.
Discovered by Michael Faraday in 1845, the Faraday effect was the first experimental evidence that light and electromagnetism are related. The theoretical basis of electromagnetic radiation (which includes visible light) was completed by James Clerk Maxwell in the 1860s. Maxwell's equations were rewritten in their current form in the 1870s by Oliver Heaviside.
The Faraday effect is caused by left and right circularly polarized waves propagating at slightly different speeds, a property known as circular birefringence. Since a linear polarization can be decomposed into the superposition of two equal-amplitude circularly polarized components of opposite handedness and different phase, the effect of a relative phase shift, induced by the Faraday effect, is to rotate the orientation of a wave's linear polarization.
The Faraday effect has applications in measuring instruments. For instance, the Faraday effect has been used to measure optical rotatory power and for remote sensing of magnetic fields (such as fiber optic current sensors). The Faraday effect is used in spintronics research to study the polarization of electron spins in semiconductors. Faraday rotators can be used for amplitude modulation of light, and are the basis of optical isolators and optical circulators; such components are required in optical telecommunications and other laser applications.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Theoretical and practical expertise is gained about the microscopy of spin structures and magnetic configuiations down to the sub-nm
length and sub-ns time scales such as transmission electron microsc
Covers the fundamentals of the Magneto-optical Kerr Effect (MOKE) and its applications in ultrafast magnetization processes and magnetic optical spectroscopy.
James Clerk Maxwell (13 June 1831 – 5 November 1879) was a Scottish physicist with broad interests and scientist responsible for the classical theory of electromagnetic radiation, which was the first theory to describe electricity, magnetism and light as different manifestations of the same phenomenon. Maxwell's equations for electromagnetism have been called the "second great unification in physics" where the first one had been realised by Isaac Newton.
A Faraday rotator is a polarization rotator based on the Faraday effect, a magneto-optic effect involving transmission of light through a material when a longitudinal static magnetic field is present. The state of polarization (such as the axis of linear polarization or the orientation of elliptical polarization) is rotated as the wave traverses the device, which is explained by a slight difference in the phase velocity between the left and right circular polarizations.
A pulsar (from pulsating radio source) is a highly magnetized rotating neutron star that emits beams of electromagnetic radiation out of its magnetic poles. This radiation can be observed only when a beam of emission is pointing toward Earth (similar to the way a lighthouse can be seen only when the light is pointed in the direction of an observer), and is responsible for the pulsed appearance of emission. Neutron stars are very dense and have short, regular rotational periods.
In engineering, oscillatory instabilities and resonances are often considered undesirable flow features and measures are taken to avoid them. This may include avoiding certain parametric regions or implementing control and mitigation strategies. However, t ...
We analyse observational signatures of magnetic fields for simulations of a Milky Way-like disc with supernova-driven interstellar turbulence and self-consistent chemical processes. In particular, we post-process two simulations data sets of the SILCC Proj ...
We introduce a high-order spline geometric approach for the initial boundary value problem for Maxwell's equations. The method is geometric in the sense that it discretizes in structure preserving fashion the two de Rham sequences of differential forms inv ...