In information theory, the binary entropy function, denoted or , is defined as the entropy of a Bernoulli process with probability of one of two values. It is a special case of , the entropy function. Mathematically, the Bernoulli trial is modelled as a random variable that can take on only two values: 0 and 1, which are mutually exclusive and exhaustive. If , then and the entropy of (in shannons) is given by where is taken to be 0. The logarithms in this formula are usually taken (as shown in the graph) to the base 2. See binary logarithm. When , the binary entropy function attains its maximum value. This is the case of an unbiased coin flip. is distinguished from the entropy function in that the former takes a single real number as a parameter whereas the latter takes a distribution or random variable as a parameter. Sometimes the binary entropy function is also written as . However, it is different from and should not be confused with the Rényi entropy, which is denoted as . In terms of information theory, entropy is considered to be a measure of the uncertainty in a message. To put it intuitively, suppose . At this probability, the event is certain never to occur, and so there is no uncertainty at all, leading to an entropy of 0. If , the result is again certain, so the entropy is 0 here as well. When , the uncertainty is at a maximum; if one were to place a fair bet on the outcome in this case, there is no advantage to be gained with prior knowledge of the probabilities. In this case, the entropy is maximum at a value of 1 bit. Intermediate values fall between these cases; for instance, if , there is still a measure of uncertainty on the outcome, but one can still predict the outcome correctly more often than not, so the uncertainty measure, or entropy, is less than 1 full bit. The derivative of the binary entropy function may be expressed as the negative of the logit function: The Taylor series of the binary entropy function in a neighborhood of 1/2 is for . The following bounds hold for : and where denotes natural logarithm.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.