En mathématique, un anneau noethérien est un cas particulier d'anneau, c'est-à-dire d'un ensemble muni d'une addition et d'une multiplication compatible avec l'addition, au sens de la distributivité. De nombreuses questions mathématiques s'expriment dans un contexte d'anneau, les endomorphismes d'un espace vectoriel ou d'un module sur un anneau, les entiers algébriques de la théorie algébrique des nombres, ou encore les surfaces de la géométrie algébrique. Si les anneaux sont nombreux, rares sont ceux disposant des propriétés communes aux exemples les plus simples comme les entiers relatifs ou les polynômes à coefficients dans un corps. La division euclidienne n'existe en général plus, les idéaux, outils majeurs de la théorie des anneaux, ne sont plus toujours principaux et le théorème fondamental de l'arithmétique ne possède plus d'équivalent. L'approche consistant à étudier une question uniquement sous l'angle des propriétés spécifiques d'une structure d'anneau particulière s'est révélée fructueuse. Richard Dedekind l'a utilisée avec succès en arithmétique et David Hilbert en géométrie algébrique. En 1920-1921, Emmy Noether choisit un nombre plus limité de propriétés vérifiées par certains anneaux et démontre de nombreux résultats sur ceux-ci. Le terme d'« anneau noethérien » apparait en 1943 sous la plume de Claude Chevalley. Dans un anneau principal, tous les idéaux sont principaux. Autrement dit, si l'anneau est considéré comme un module sur lui-même, ses idéaux sont alors des sous-modules engendrés par un élément. Mais beaucoup d'anneaux usuels ne sont pas principaux. L'anneau Z[X] des polynômes à coefficients entiers est un exemple d'anneau non principal. En arithmétique, il est fréquent d'utiliser des anneaux d'entiers algébriques, comme l'anneau Z[i], qui est un exemple d'anneau d'entiers quadratiques non factoriel donc non principal. Cependant, dans Z[i], tous les idéaux sont engendrés par un ou deux éléments. Plus généralement, dans tout anneau d'entiers algébriques d'un corps de nombres, les idéaux, à défaut d'être engendrés par un unique élément, le sont par un nombre fini d'éléments.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (12)
MATH-438: Statistical genetics
This course will cover the major topics in statistical genetics.
MATH-311: Algebra IV - rings and modules
Ring and module theory with a major emphasis on commutative algebra and a minor emphasis on homological algebra.
MATH-215: Algebra III - rings and fields
C'est un cours introductoire dans la théorie d'anneau et de corps.
Afficher plus
Publications associées (32)
Concepts associés (30)
Anneau commutatif
Un anneau commutatif est un anneau dans lequel la loi de multiplication est commutative. L’étude des anneaux commutatifs s’appelle l’algèbre commutative. Un anneau commutatif est un anneau (unitaire) dans lequel la loi de multiplication est commutative. Dans la mesure où les anneaux commutatifs sont des anneaux particuliers, nombre de concepts de théorie générale des anneaux conservent toute leur pertinence et leur utilité en théorie des anneaux commutatifs : ainsi ceux de morphismes d'anneaux, d'idéaux et d'anneaux quotients, de sous-anneaux, d'éléments nilpotents.
Conditions de chaîne
Les conditions de chaîne (ascendante et descendante) sont deux propriétés mathématiques sur les ordres, identifiées initialement par Emmy Noether dans le contexte de l'algèbre commutative. Sur un ensemble partiellement ordonné (V, ≤), la condition de chaîne ascendante désigne la propriété suivante : toute suite croissante (xn)n ∈ N d'éléments de V est stationnaire, c'est-à-dire constante à partir d'un certain rang (il existe un entier N tel que pour tout n ≥ N, xn = xN) ou également la propriété (équivalente car il s'agit d'une relation d'ordre) V ne contient pas de suite infinie strictement croissante.
Diviseur de zéro
En mathématiques, dans un anneau, un diviseur de zéro est un élément non nul dont le produit par un certain élément non nul est égal à zéro. Soient un anneau et tel que , où est l'élément neutre pour la loi . On dit que est un diviseur de zéro à gauche dans si On dit que est un diviseur de zéro à droite dans si On dit que est un diviseur de zéro dans si est un diviseur de zéro à gauche dans ou un diviseur de zéro à droite dans . Un élément de est dit régulier s'il n'est ni nul, ni diviseur de zéro.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.