Résumé
En mathématique, un anneau noethérien est un cas particulier d'anneau, c'est-à-dire d'un ensemble muni d'une addition et d'une multiplication compatible avec l'addition, au sens de la distributivité. De nombreuses questions mathématiques s'expriment dans un contexte d'anneau, les endomorphismes d'un espace vectoriel ou d'un module sur un anneau, les entiers algébriques de la théorie algébrique des nombres, ou encore les surfaces de la géométrie algébrique. Si les anneaux sont nombreux, rares sont ceux disposant des propriétés communes aux exemples les plus simples comme les entiers relatifs ou les polynômes à coefficients dans un corps. La division euclidienne n'existe en général plus, les idéaux, outils majeurs de la théorie des anneaux, ne sont plus toujours principaux et le théorème fondamental de l'arithmétique ne possède plus d'équivalent. L'approche consistant à étudier une question uniquement sous l'angle des propriétés spécifiques d'une structure d'anneau particulière s'est révélée fructueuse. Richard Dedekind l'a utilisée avec succès en arithmétique et David Hilbert en géométrie algébrique. En 1920-1921, Emmy Noether choisit un nombre plus limité de propriétés vérifiées par certains anneaux et démontre de nombreux résultats sur ceux-ci. Le terme d'« anneau noethérien » apparait en 1943 sous la plume de Claude Chevalley. Dans un anneau principal, tous les idéaux sont principaux. Autrement dit, si l'anneau est considéré comme un module sur lui-même, ses idéaux sont alors des sous-modules engendrés par un élément. Mais beaucoup d'anneaux usuels ne sont pas principaux. L'anneau Z[X] des polynômes à coefficients entiers est un exemple d'anneau non principal. En arithmétique, il est fréquent d'utiliser des anneaux d'entiers algébriques, comme l'anneau Z[i], qui est un exemple d'anneau d'entiers quadratiques non factoriel donc non principal. Cependant, dans Z[i], tous les idéaux sont engendrés par un ou deux éléments. Plus généralement, dans tout anneau d'entiers algébriques d'un corps de nombres, les idéaux, à défaut d'être engendrés par un unique élément, le sont par un nombre fini d'éléments.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.