In graph theory, a vertex cover (sometimes node cover) of a graph is a set of vertices that includes at least one endpoint of every edge of the graph. In computer science, the problem of finding a minimum vertex cover is a classical optimization problem. It is NP-hard, so it cannot be solved by a polynomial-time algorithm if P ≠ NP. Moreover, it is hard to approximate – it cannot be approximated up to a factor smaller than 2 if the unique games conjecture is true. On the other hand, it has several simple 2-factor approximations. It is a typical example of an NP-hard optimization problem that has an approximation algorithm. Its decision version, the vertex cover problem, was one of Karp's 21 NP-complete problems and is therefore a classical NP-complete problem in computational complexity theory. Furthermore, the vertex cover problem is fixed-parameter tractable and a central problem in parameterized complexity theory. The minimum vertex cover problem can be formulated as a half-integral, linear program whose dual linear program is the maximum matching problem. Vertex cover problems have been generalized to hypergraphs, see Vertex cover in hypergraphs. Formally, a vertex cover of an undirected graph is a subset of such that , that is to say it is a set of vertices where every edge has at least one endpoint in the vertex cover . Such a set is said to cover the edges of . The upper figure shows two examples of vertex covers, with some vertex cover marked in red. A minimum vertex cover is a vertex cover of smallest possible size. The vertex cover number is the size of a minimum vertex cover, i.e. . The lower figure shows examples of minimum vertex covers in the previous graphs. The set of all vertices is a vertex cover. The endpoints of any maximal matching form a vertex cover. The complete bipartite graph has a minimum vertex cover of size . A set of vertices is a vertex cover if and only if its complement is an independent set. Consequently, the number of vertices of a graph is equal to its minimum vertex cover number plus the size of a maximum independent set (Gallai 1959).

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.