In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaves are a class of sheaves closely linked to the geometric properties of the underlying space. The definition of coherent sheaves is made with reference to a sheaf of rings that codifies this geometric information.
Coherent sheaves can be seen as a generalization of vector bundles. Unlike vector bundles, they form an , and so they are closed under operations such as taking , , and cokernels. The quasi-coherent sheaves are a generalization of coherent sheaves and include the locally free sheaves of infinite rank.
Coherent sheaf cohomology is a powerful technique, in particular for studying the sections of a given coherent sheaf.
A quasi-coherent sheaf on a ringed space is a sheaf of -modules which has a local presentation, that is, every point in has an open neighborhood in which there is an exact sequence
for some (possibly infinite) sets and .
A coherent sheaf on a ringed space is a sheaf satisfying the following two properties:
is of finite type over , that is, every point in has an open neighborhood in such that there is a surjective morphism for some natural number ;
for any open set , any natural number , and any morphism of -modules, the kernel of is of finite type.
Morphisms between (quasi-)coherent sheaves are the same as morphisms of sheaves of -modules.
When is a scheme, the general definitions above are equivalent to more explicit ones. A sheaf of -modules is quasi-coherent if and only if over each open affine subscheme the restriction is isomorphic to the sheaf associated to the module over . When is a locally Noetherian scheme, is coherent if and only if it is quasi-coherent and the modules above can be taken to be finitely generated.
On an affine scheme , there is an equivalence of categories from -modules to quasi-coherent sheaves, taking a module to the associated sheaf . The inverse equivalence takes a quasi-coherent sheaf on to the -module of global sections of .
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
We will study classical and modern deformation theory of schemes and coherent sheaves. Participants should have a solid background in scheme-theory, for example being familiar with the first 3 chapter
In mathematics, sheaf cohomology is the application of homological algebra to analyze the global sections of a sheaf on a topological space. Broadly speaking, sheaf cohomology describes the obstructions to solving a geometric problem globally when it can be solved locally. The central work for the study of sheaf cohomology is Grothendieck's 1957 Tôhoku paper. Sheaves, sheaf cohomology, and spectral sequences were introduced by Jean Leray at the prisoner-of-war camp Oflag XVII-A in Austria.
In mathematics, in particular in algebraic topology, differential geometry and algebraic geometry, the Chern classes are characteristic classes associated with complex vector bundles. They have since become fundamental concepts in many branches of mathematics and physics, such as string theory, Chern–Simons theory, knot theory, Gromov-Witten invariants. Chern classes were introduced by . Chern classes are characteristic classes. They are topological invariants associated with vector bundles on a smooth manifold.
Henri Paul Cartan (kaʁtɑ̃; 8 July 1904 – 13 August 2008) was a French mathematician who made substantial contributions to algebraic topology. He was the son of the mathematician Élie Cartan, nephew of mathematician Anna Cartan, oldest brother of composer fr, physicist fr and mathematician fr, and the son-in-law of physicist Pierre Weiss. According to his own words, Henri Cartan was interested in mathematics at a very young age, without being influenced by his family.
Covers the concept of quasi-coherence in algebraic geometry, discussing the lifting of functions, sections of sheaves, and push forwards of coherent sheaves.
We define p-adic BPS or pBPS invariants for moduli spaces M-beta,M-chi of one-dimensional sheaves on del Pezzo and K3 surfaces by means of integration over a non-archimedean local field F. Our definition relies on a canonical measure mu can on the F-analyt ...
The sheaf-function correspondence identifies the group of constructible functions on a real analytic manifold M with the Grothendieck group of constructible sheaves on M. When M is a finite dimensional real vector space, Kashiwara-Schapira have recently in ...
We extend the group-theoretic notion of conditional flatness for a localization functor to any pointed category, and investigate it in the context of homological categories and of semi-abelian categories. In the presence of functorial fiberwise localizatio ...