In the mathematical field of complex analysis, contour integration is a method of evaluating certain integrals along paths in the complex plane.
Contour integration is closely related to the calculus of residues, a method of complex analysis.
One use for contour integrals is the evaluation of integrals along the real line that are not readily found by using only real variable methods.
Contour integration methods include:
direct integration of a complex-valued function along a curve in the complex plane;
application of the Cauchy integral formula; and
application of the residue theorem.
One method can be used, or a combination of these methods, or various limiting processes, for the purpose of finding these integrals or sums.
In complex analysis a contour is a type of curve in the complex plane. In contour integration, contours provide a precise definition of the curves on which an integral may be suitably defined. A curve in the complex plane is defined as a continuous function from a closed interval of the real line to the complex plane: z : [a, b] → C.
This definition of a curve coincides with the intuitive notion of a curve, but includes a parametrization by a continuous function from a closed interval. This more precise definition allows us to consider what properties a curve must have for it to be useful for integration. In the following subsections we narrow down the set of curves that we can integrate to include only those that can be built up out of a finite number of continuous curves that can be given a direction. Moreover, we will restrict the "pieces" from crossing over themselves, and we require that each piece have a finite (non-vanishing) continuous derivative. These requirements correspond to requiring that we consider only curves that can be traced, such as by a pen, in a sequence of even, steady strokes, which stop only to start a new piece of the curve, all without picking up the pen.
Contours are often defined in terms of directed smooth curves. These provide a precise definition of a "piece" of a smooth curve, of which a contour is made.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This year's topic is "Adelic Number Theory" or how the language of adeles and ideles and harmonic analysis on the corresponding spaces can be used to revisit classical questions in algebraic number th
Le cours étudie les concepts fondamentaux de l'analyse complexe et de l'analyse de Laplace en vue de leur utilisation
pour résoudre des problèmes pluridisciplinaires d'ingénierie scientifique.
In mathematics, a line integral is an integral where the function to be integrated is evaluated along a curve. The terms path integral, curve integral, and curvilinear integral are also used; contour integral is used as well, although that is typically reserved for line integrals in the complex plane. The function to be integrated may be a scalar field or a vector field. The value of the line integral is the sum of values of the field at all points on the curve, weighted by some scalar function on the curve (commonly arc length or, for a vector field, the scalar product of the vector field with a differential vector in the curve).
In mathematics, the Cauchy integral theorem (also known as the Cauchy–Goursat theorem) in complex analysis, named after Augustin-Louis Cauchy (and Édouard Goursat), is an important statement about line integrals for holomorphic functions in the complex plane. Essentially, it says that if is holomorphic in a simply connected domain Ω, then for any simply closed contour in Ω, that contour integral is zero.
In mathematics, the Laurent series of a complex function is a representation of that function as a power series which includes terms of negative degree. It may be used to express complex functions in cases where a Taylor series expansion cannot be applied. The Laurent series was named after and first published by Pierre Alphonse Laurent in 1843. Karl Weierstrass may have discovered it first in a paper written in 1841, but it was not published until after his death.
We develop new tools to study landscapes in nonconvex optimization. Given one optimization problem, we pair it with another by smoothly parametrizing the domain. This is either for practical purposes (e.g., to use smooth optimization algorithms with good g ...
Two-dimensional (2D) hexagonal lattices of Cu disks are shown to induce orientation-dependent magnonic crystal (MC) modes for propagating forward volume spin waves in a single-crystal yttrium iron garnet (YIG) film. The width and depth of the magnonic band ...
Recently, we have applied the generalized Littlewood theorem concerning contour integrals of the logarithm of the analytical function to find the sums over inverse powers of zeros for the incomplete gamma and Riemann zeta functions, polygamma functions, an ...