Résumé
Cet article traite du développement en série de Laurent en analyse complexe. Pour la définition et les propriétés des séries de Laurent formelles en algèbre, veuillez consulter l'article Série formelle. En analyse complexe, la série de Laurent (aussi appelée développement de Laurent) d'une fonction holomorphe f est une manière de représenter f au voisinage d'une singularité, ou plus généralement, autour d'un « trou » de son domaine de définition. On représente f comme somme d'une série de puissances (d'exposants positifs ou négatifs) de la variable complexe. Une fonction holomorphe f est analytique, c'est-à-dire développable en série entière au voisinage de chaque point de son domaine de définition. Autrement dit, au voisinage d'un point a où f est définie, on peut écrire f(z) sous la forme : On a fait apparaître une série entière en a, qui est la série de Taylor de f en a. Les séries de Laurent peuvent être vues comme une extension pour décrire f autour d'un point où elle n'est pas (a priori) définie. On inclut les puissances d'exposants négatifs ; une série de Laurent se présentera donc sous la forme : Les séries de Laurent furent nommées ainsi après leur publication par Pierre Alphonse Laurent en 1843. Karl Weierstrass les découvrit le premier mais il ne publia pas sa découverte. Le plus souvent, les auteurs d'analyse complexe présentent les séries de Laurent pour les fonctions holomorphes définies sur des couronnes, c'est-à-dire des ouverts du plan complexe délimités par deux cercles concentriques. Ces séries sont surtout utilisées pour étudier le comportement d'une fonction holomorphe autour d'une singularité. Une couronne centrée en a est un ouvert du plan complexe délimité par au plus deux cercles de centre a. En général, une couronne est délimitée par deux cercles de rayons respectifs r, R tels que r < R. Plusieurs cas dégénérés peuvent toutefois être envisagés : Si R vaut l'infini, la couronne considérée est le complémentaire du disque fermé de centre a et de rayon r ; Si r vaut 0, la couronne correspond au disque ouvert de centre a et de rayon R, privé de a.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.