En analyse complexe, lintégration de contour est une technique de calcul d'intégrale le long de chemins sur le plan complexe
L'intégration de contour est fortement liée au calculs de résidus, une méthode de calcul utilisée pour évaluer des intégrales curvilignes sur l'axe des réelles, que les outils de la théorie de l'intégration ne permettent pas de calculer par une simple analyse réelle
Les méthodes d'intégration de contour incluent :
l'intégration directe d'une fonction à valeurs complexes le long d'une courbe du plan complexe (ledit contour) ;
une application de la formule intégrale de Cauchy ;
l'application du théorème des résidus.
Ces méthodes peuvent être combinées pour obtenir les résultats attendus.
Les contours donnent une définition précise des courbes sur lesquelles une intégrale peut être exactement définie. Une courbe du plan complexe est donc une fonction continue renvoyant un intervalle réel fermé sur le plan complexe : z : [a, b] → C.
Cette définition coïncide avec la notion intuitive d'une courbe, mais inclut une paramétrisation par une fonction continue à partir d'un intervalle fermé. Cette définition plus précise permet de réfléchir aux propriétés que doit avoir une courbe pour qu'elle soit utile à l'intégration. Dans les sous-sections suivantes, on réduira l'ensemble de courbes intégrables pour n'inclure que celles qui peuvent être construites à partir d'un nombre fini de courbes continues, auxquelles on peut donner une direction. De plus, on empêchera les "morceaux" de se croiser, et on imposera que chaque morceau ait une dérivée continue finie (non nulle). Ces exigences permettent de ne considérer que les courbes qui peuvent être tracées, comme par un stylo, dans une séquence de traits constants et réguliers, qui ne s'arrêtent que pour commencer un nouveau morceau de la courbe, le tout sans relever le stylo.
Les contours sont définis comme des courbes régulières orientées. On peut ainsi définir précisément un "morceau" d'une courbe lisse, dont on trace un contour.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This year's topic is "Adelic Number Theory" or how the language of adeles and ideles and harmonic analysis on the corresponding spaces can be used to revisit classical questions in algebraic number th
Le cours étudie les concepts fondamentaux de l'analyse complexe et de l'analyse de Laplace en vue de leur utilisation
pour résoudre des problèmes pluridisciplinaires d'ingénierie scientifique.
En géométrie différentielle, l'intégrale curviligne est une intégrale où la fonction à intégrer est évaluée sur une courbe Γ. Il y a deux types d'intégrales curvilignes, selon que la fonction est à valeurs réelles ou à valeurs dans les formes linéaires. Le second type (qui peut se reformuler en termes de circulation d'un champ de vecteurs) a comme cas particulier les intégrales que l'on considère en analyse complexe. Dans cet article, Γ est un arc orienté dans R, rectifiable c'est-à-dire paramétré par une fonction continue à variation bornée t ↦ γ(t), avec t ∈ [a, b].
En analyse complexe, le théorème intégral de Cauchy, ou de Cauchy-Goursat, est un important résultat concernant les intégrales curvilignes de fonctions holomorphes dans le plan complexe. D'après ce théorème, si deux chemins différents relient les deux mêmes points et si une fonction est holomorphe « entre » les deux chemins, alors les deux intégrales de cette fonction suivant ces chemins sont égales. Le théorème est habituellement formulé pour les lacets (c'est-à-dire les chemins dont le point de départ est confondu avec le point d'arrivée) de la manière suivante.
Cet article traite du développement en série de Laurent en analyse complexe. Pour la définition et les propriétés des séries de Laurent formelles en algèbre, veuillez consulter l'article Série formelle. En analyse complexe, la série de Laurent (aussi appelée développement de Laurent) d'une fonction holomorphe f est une manière de représenter f au voisinage d'une singularité, ou plus généralement, autour d'un « trou » de son domaine de définition. On représente f comme somme d'une série de puissances (d'exposants positifs ou négatifs) de la variable complexe.
We develop new tools to study landscapes in nonconvex optimization. Given one optimization problem, we pair it with another by smoothly parametrizing the domain. This is either for practical purposes (e.g., to use smooth optimization algorithms with good g ...
Recently, we have applied the generalized Littlewood theorem concerning contour integrals of the logarithm of the analytical function to find the sums over inverse powers of zeros for the incomplete gamma and Riemann zeta functions, polygamma functions, an ...
Two-dimensional (2D) hexagonal lattices of Cu disks are shown to induce orientation-dependent magnonic crystal (MC) modes for propagating forward volume spin waves in a single-crystal yttrium iron garnet (YIG) film. The width and depth of the magnonic band ...