Summary
In mathematics, a constraint is a condition of an optimization problem that the solution must satisfy. There are several types of constraints—primarily equality constraints, inequality constraints, and integer constraints. The set of candidate solutions that satisfy all constraints is called the feasible set. The following is a simple optimization problem: subject to and where denotes the vector (x1, x2). In this example, the first line defines the function to be minimized (called the objective function, loss function, or cost function). The second and third lines define two constraints, the first of which is an inequality constraint and the second of which is an equality constraint. These two constraints are hard constraints, meaning that it is required that they be satisfied; they define the feasible set of candidate solutions. Without the constraints, the solution would be (0,0), where has the lowest value. But this solution does not satisfy the constraints. The solution of the constrained optimization problem stated above is , which is the point with the smallest value of that satisfies the two constraints. If an inequality constraint holds with equality at the optimal point, the constraint is said to be , as the point cannot be varied in the direction of the constraint even though doing so would improve the value of the objective function. If an inequality constraint holds as a strict inequality at the optimal point (that is, does not hold with equality), the constraint is said to be , as the point could be varied in the direction of the constraint, although it would not be optimal to do so. Under certain conditions, as for example in convex optimization, if a constraint is non-binding, the optimization problem would have the same solution even in the absence of that constraint. If a constraint is not satisfied at a given point, the point is said to be infeasible. If the problem mandates that the constraints be satisfied, as in the above discussion, the constraints are sometimes referred to as hard constraints.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.