Un nombre constructible (sous-entendu à la règle et au compas) est la mesure d'une longueur associée à deux points constructibles à la règle (non graduée) et au compas. Ainsi, est un nombre constructible, mais ni ni π ne le sont. C'est effectivement en termes de longueurs que pensaient les mathématiciens grecs et ceux qui, à leur suite, ont cherché à déterminer quels étaient les points et les nombres constructibles de cette façon. Du temps de la mathématique grecque, on distinguait les problèmes dont les solutions ne faisaient intervenir que des droites et des cercles dans le plan, de ceux faisant intervenir d'autres procédés (utilisation de courbes dites « mécaniques » telles la spirale d'Archimède ou les conchoïdes, utilisation de coniques pour les problèmes dits solides...). Cette distinction est à la source de problèmes célèbres comme la quadrature du cercle, la trisection de l'angle et la duplication du cube. Les mathématiciens, jusqu'au , n'accordaient aucune réalité concrète aux nombres négatifs. Il est cependant commode d'appliquer la définition, non seulement à des longueurs, mais également à des coordonnées de points constructibles. On donne ici une définition mathématique précise de la notion de point constructible (sous-entendu, à la règle et au compas). Soit E un sous-ensemble du plan euclidien, qu'on assimile ici à R. On dit qu'un point P = (x, y) est constructible en une étape à partir de E si P est un point de E ou si P est dans l'intersection de deux objets distincts parmi : l'ensemble des droites qui passent par deux éléments distincts de E ; l'ensemble des cercles centrés en un point de E et dont le rayon est la distance de deux quelconques points de E. On note C(E) l'ensemble des points constructibles en une étape à partir de E. On peut remarquer que si E est fini, alors, C(E) l'est aussi. Partant des mêmes données, on définit, naturellement et par récurrence, l'ensemble C(E) des points constructibles en n étapes à partir de E. Pour n = 1, c'est la construction précédente.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (7)
MATH-124: Geometry for architects I
Ce cours entend exposer les fondements de la géométrie à un triple titre : 1/ de technique mathématique essentielle au processus de conception du projet, 2/ d'objet privilégié des logiciels de concept
AR-201(m): Studio BA3 (Taillieu)
A house is the simple topic of this studio. A matter of simple complexity. Starting as reference from an architect's drawing and a pavilion; constructing a "space to be". Then making two houses, "a pl
AR-202(m): Studio BA4 (Taillieu)
A house is the simple topic of this studio. A matter of simple complexity. Starting as reference from an architect's drawing and a pavillon; constructing a "space to be". Then making two houses, "a pl
Afficher plus
Publications associées (46)
Concepts associés (19)
Construction à la règle et au compas
Euclide a fondé sa géométrie sur un système d'axiomes qui assure en particulier qu'il est toujours possible de tracer une droite passant par deux points donnés et qu'il est toujours possible de tracer un cercle de centre donné et passant par un point donné. La géométrie euclidienne est donc la géométrie des droites et des cercles, donc de la règle (non graduée) et du compas. L'intuition d'Euclide était que tout nombre pouvait être construit, ou « obtenu », à l'aide de ces deux instruments.
Corps commutatif
vignette|Corps commutatif (pour n premier) En mathématiques, un corps commutatif (parfois simplement appelé corps, voir plus bas, ou parfois appelé champ) est une des structures algébriques fondamentales de l'algèbre générale. C'est un ensemble muni de deux opérations binaires rendant possibles les additions, soustractions, multiplications et divisions. Plus précisément, un corps commutatif est un anneau commutatif dans lequel l'ensemble des éléments non nuls est un groupe commutatif pour la multiplication.
Trisection de l'angle
La trisection de l'angle est un problème classique de mathématiques. C'est un problème géométrique, faisant partie des trois grands problèmes de l'Antiquité, avec la quadrature du cercle et la duplication du cube. Ce problème consiste à diviser un angle en trois parties égales, à l'aide d'une règle et d'un compas. Sous cette forme, le problème (comme les deux autres) n'a pas de solution, ce qui fut démontré par Pierre-Laurent Wantzel en 1837.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.