In mathematics compact convergence (or uniform convergence on compact sets) is a type of convergence that generalizes the idea of uniform convergence. It is associated with the compact-open topology.
Let be a topological space and be a metric space. A sequence of functions
is said to converge compactly as to some function if, for every compact set ,
uniformly on as . This means that for all compact ,
If and with their usual topologies, with , then converges compactly to the constant function with value 0, but not uniformly.
If , and , then converges pointwise to the function that is zero on and one at , but the sequence does not converge compactly.
A very powerful tool for showing compact convergence is the Arzelà–Ascoli theorem. There are several versions of this theorem, roughly speaking it states that every sequence of equicontinuous and uniformly bounded maps has a subsequence that converges compactly to some continuous map.
If uniformly, then compactly.
If is a compact space and compactly, then uniformly.
If is a locally compact space, then compactly if and only if locally uniformly.
If is a compactly generated space, compactly, and each is continuous, then is continuous.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
In mathematics, Hilbert spaces (named after David Hilbert) allow the methods of linear algebra and calculus to be generalized from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise naturally and frequently in mathematics and physics, typically as function spaces. Formally, a Hilbert space is a vector space equipped with an inner product that induces a distance function for which the space is a complete metric space.
In the mathematical field of analysis, uniform convergence is a mode of convergence of functions stronger than pointwise convergence. A sequence of functions converges uniformly to a limiting function on a set as the function domain if, given any arbitrarily small positive number , a number can be found such that each of the functions differs from by no more than at every point in .
As the positive integer becomes larger and larger, the value becomes arbitrarily close to . We say that "the limit of the sequence equals ." In mathematics, the limit of a sequence is the value that the terms of a sequence "tend to", and is often denoted using the symbol (e.g., ). If such a limit exists, the sequence is called convergent. A sequence that does not converge is said to be divergent. The limit of a sequence is said to be the fundamental notion on which the whole of mathematical analysis ultimately rests.
The first nonlinear gyrokinetic simulations obtained using a moment approach based on the Hermite-Laguerre decomposition of the distribution function are presented, implementing advanced models for the collision operator. Turbulence in a two-dimensional Z- ...
CAMBRIDGE UNIV PRESS2023
, ,
Despite the widespread empirical success of ResNet, the generalization properties of deep ResNet are rarely explored beyond the lazy training regime. In this work, we investigate scaled ResNet in the limit of infinitely deep and wide neural networks, of wh ...
2024
,
Driven by the need for more efficient and seamless integration of physical models and data, physics -informed neural networks (PINNs) have seen a surge of interest in recent years. However, ensuring the reliability of their convergence and accuracy remains ...