Summary
A centripetal force (from Latin centrum, "center" and petere, "to seek") is a force that makes a body follow a curved path. The direction of the centripetal force is always orthogonal to the motion of the body and towards the fixed point of the instantaneous center of curvature of the path. Isaac Newton described it as "a force by which bodies are drawn or impelled, or in any way tend, towards a point as to a centre". In the theory of Newtonian mechanics, gravity provides the centripetal force causing astronomical orbits. One common example involving centripetal force is the case in which a body moves with uniform speed along a circular path. The centripetal force is directed at right angles to the motion and also along the radius towards the centre of the circular path. The mathematical description was derived in 1659 by the Dutch physicist Christiaan Huygens. From the kinematics of curved motion it is known that an object moving at tangential speed v along a path with radius of curvature r accelerates toward the center of curvature at a rate Here, is the centripetal acceleration and is the difference between the velocity vectors at and . By Newton's second law, the cause of acceleration is a net force acting on the object, which is proportional to its mass m and its acceleration. The force, usually referred to as a centripetal force, has a magnitude and is, like centripetal acceleration, directed toward the center of curvature of the object's trajectory. The centripetal acceleration can be inferred from the diagram of the velocity vectors at two instances. In the case of uniform circular motion the velocities have constant magnitude. Because each one is perpendicular to its respective position vector, simple vector subtraction implies two similar isosceles triangles with congruent angles – one comprising a base of and a leg length of , and the other a base of (position vector difference) and a leg length of : Therefore, can be substituted with : The direction of the force is toward the center of the circle in which the object is moving, or the osculating circle (the circle that best fits the local path of the object, if the path is not circular).
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood