In mathematics, particularly linear algebra, an orthogonal basis for an inner product space is a basis for whose vectors are mutually orthogonal. If the vectors of an orthogonal basis are normalized, the resulting basis is an orthonormal basis. Any orthogonal basis can be used to define a system of orthogonal coordinates Orthogonal (not necessarily orthonormal) bases are important due to their appearance from curvilinear orthogonal coordinates in Euclidean spaces, as well as in Riemannian and pseudo-Riemannian manifolds. In functional analysis, an orthogonal basis is any basis obtained from an orthonormal basis (or Hilbert basis) using multiplication by nonzero scalars. The concept of an orthogonal basis is applicable to a vector space (over any field) equipped with a symmetric bilinear form where orthogonality of two vectors and means For an orthogonal basis where is a quadratic form associated with (in an inner product space, ). Hence for an orthogonal basis where and are components of and in the basis. The concept of orthogonality may be extended to a vector space (over any field) equipped with a quadratic form .

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (33)
MATH-111(e): Linear Algebra
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et ses applications.
MATH-261: Discrete optimization
This course is an introduction to linear and discrete optimization. Warning: This is a mathematics course! While much of the course will be algorithmic in nature, you will still need to be able to p
BIO-491: New tools & research strategies in personalized health
We will define the concept of personalized health, describe the underlying technologies, the technological, legal and ethical challenges that the field faces today, and how they are being met.
Show more
Related lectures (175)
Linear Programming Basics
Covers the basics of linear programming and the simplex method, focusing on finding optimal solutions and handling degeneracy.
Quantum circuit model of computation
Explores the quantum circuit model of computation, focusing on unitary gates and multi-controlled gates.
Orthogonal Basis of Subspaces
Explains the concept and calculations of orthogonal bases for subspaces in linear algebra.
Show more
Related publications (40)

SPEEDING UP KRYLOV SUBSPACE METHODS FOR COMPUTING f(A)b VIA RANDOMIZATION

Daniel Kressner, Alice Cortinovis

This work is concerned with the computation of the action of a matrix function f(A), such as the matrix exponential or the matrix square root, on a vector b. For a general matrix A, this can be done by computing the compression of A onto a suitable Krylov ...
Siam Publications2024

Randomized flexible GMRES with deflated restarting

Laura Grigori, Emeric Martin

For a high dimensional problem, a randomized Gram-Schmidt (RGS) algorithm is beneficial in computational costs as well as numerical stability. We apply this dimension reduction technique by random sketching to Krylov subspace methods, e.g. to the generaliz ...
Springer2024

Spectral representation of EEG data using learned graphs with application to motor imagery decoding

Dimitri Nestor Alice Van De Ville, Hamid Behjat, Maliheh Miri

Electroencephalography (EEG) data entail a complex spatiotemporal structure that reflects ongoing organi-zation of brain activity. Characterization of the spatial patterns is an indispensable step in numerous EEG processing pipelines. We present a novel me ...
Oxford2023
Show more
Related concepts (2)
Orthonormal basis
In mathematics, particularly linear algebra, an orthonormal basis for an inner product space V with finite dimension is a basis for whose vectors are orthonormal, that is, they are all unit vectors and orthogonal to each other. For example, the standard basis for a Euclidean space is an orthonormal basis, where the relevant inner product is the dot product of vectors. The of the standard basis under a rotation or reflection (or any orthogonal transformation) is also orthonormal, and every orthonormal basis for arises in this fashion.
Quadratic form
In mathematics, a quadratic form is a polynomial with terms all of degree two ("form" is another name for a homogeneous polynomial). For example, is a quadratic form in the variables x and y. The coefficients usually belong to a fixed field K, such as the real or complex numbers, and one speaks of a quadratic form over K. If , and the quadratic form equals zero only when all variables are simultaneously zero, then it is a definite quadratic form; otherwise it is an isotropic quadratic form.
Related MOOCs (16)
Advanced statistical physics
We explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.
Advanced statistical physics
We explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.
Digital Signal Processing I
Basic signal processing concepts, Fourier analysis and filters. This module can be used as a starting point or a basic refresher in elementary DSP
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.