Summary
Doubly fed electric machines, also slip-ring generators, are electric motors or electric generators, where both the field magnet windings and armature windings are separately connected to equipment outside the machine. By feeding adjustable frequency AC power to the field windings, the magnetic field can be made to rotate, allowing variation in motor or generator speed. This is useful, for instance, for generators used in wind turbines. DFIG-based wind turbines, because of their flexibility and ability to control active and reactive power, are almost the most interesting wind turbine technology. Doubly fed electrical generators are similar to AC electrical generators, but have additional features which allow them to run at speeds slightly above or below their natural synchronous speed. This is useful for large variable speed wind turbines, because wind speed can change suddenly. When a gust of wind hits a wind turbine, the blades try to speed up, but a synchronous generator is locked to the speed of the power grid and cannot speed up. So large forces are developed in the hub, gearbox, and generator as the power grid pushes back. This causes wear and damage to the mechanism. If the turbine is allowed to speed up immediately when hit by a wind gust, the stresses are lower with the power from the wind gust still being converted to useful electricity. One approach to allowing wind turbine speed to vary is to accept whatever frequency the generator produces, convert it to DC, and then convert it to AC at the desired output frequency using an inverter. This is common for small house and farm wind turbines. But the inverters required for megawatt-scale wind turbines are large and expensive. Doubly fed generators are another solution to this problem. Instead of the usual field winding fed with DC, and an armature winding where the generated electricity comes out, there are two three-phase windings, one stationary and one rotating, both separately connected to equipment outside the generator. Thus, the term doubly fed is used for this kind of machines.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (13)
EE-565: Industrial electronics II
The course is dealing with high performance drives and methods to control various electrical machines by means of power electronic converter and advanced control methods.
EE-588: Advanced lab in electrical energy systems
The purpose of this teaching lab is to put together all the concepts learned during the course into electrical energy by the implementation of an islanded production unit. The number of places is limi
EE-490(c): Lab in electrical energy systems
This teaching lab provides the practical experiences related to the operation of power electronics converters and digital control in power electronics, through experimental activities on the Power Ele
Show more
Related lectures (34)
Electric Motors: Principles and Applications
Explores electric motor principles, linearity, control systems, active suspensions, and Laplace transforms.
Synchronous Machine Simulation
Demonstrates the synchronization process of a 250 kV synchronous machine simulator.
Components: Actuators and Gear Boxes
Covers the sizing and selection of motors and actuators, gear boxes, sensors, cables, and gauges in space mechanisms.
Show more
Related publications (151)