In mathematics, the Tor functors are the derived functors of the tensor product of modules over a ring. Along with the Ext functor, Tor is one of the central concepts of homological algebra, in which ideas from algebraic topology are used to construct invariants of algebraic structures. The homology of groups, Lie algebras, and associative algebras can all be defined in terms of Tor. The name comes from a relation between the first Tor group Tor1 and the torsion subgroup of an abelian group.
In the special case of abelian groups, Tor was introduced by Eduard Čech (1935) and named by Samuel Eilenberg around 1950. It was first applied to the Künneth theorem and universal coefficient theorem in topology. For modules over any ring, Tor was defined by Henri Cartan and Eilenberg in their 1956 book Homological Algebra.
Let R be a ring. Write R-Mod for the of left R-modules and Mod-R for the category of right R-modules. (If R is commutative, the two categories can be identified.) For a fixed left R-module B, let for A in Mod-R. This is a right exact functor from Mod-R to the Ab, and so it has left derived functors . The Tor groups are the abelian groups defined by
for an integer i. By definition, this means: take any projective resolution
and remove A, and form the chain complex:
For each integer i, the group is the homology of this complex at position i. It is zero for i negative. Moreover, is the cokernel of the map , which is isomorphic to .
Alternatively, one can define Tor by fixing A and taking the left derived functors of the right exact functor G(B) = A ⊗R B. That is, tensor A with a projective resolution of B and take homology. Cartan and Eilenberg showed that these constructions are independent of the choice of projective resolution, and that both constructions yield the same Tor groups. Moreover, for a fixed ring R, Tor is a functor in each variable (from R-modules to abelian groups).
For a commutative ring R and R-modules A and B, Tor_R(A, B) is an R-module (using that A ⊗R B is an R-module in this case).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Singular cohomology is defined by dualizing the singular chain complex for spaces. We will study its basic properties, see how it acquires a multiplicative structure and becomes a graded commutative a
This course will provide an introduction to model category theory, which is an abstract framework for generalizing homotopy theory beyond topological spaces and continuous maps. We will study numerous
In mathematics, and more specifically in homological algebra, a resolution (or left resolution; dually a coresolution or right resolution) is an exact sequence of modules (or, more generally, of s of an ), which is used to define invariants characterizing the structure of a specific module or object of this category. When, as usually, arrows are oriented to the right, the sequence is supposed to be infinite to the left for (left) resolutions, and to the right for right resolutions.
In abstract algebra, a bimodule is an abelian group that is both a left and a right module, such that the left and right multiplications are compatible. Besides appearing naturally in many parts of mathematics, bimodules play a clarifying role, in the sense that many of the relationships between left and right modules become simpler when they are expressed in terms of bimodules. If R and S are two rings, then an R-S-bimodule is an abelian group such that: M is a left R-module and a right S-module.
In mathematics, the Koszul complex was first introduced to define a cohomology theory for Lie algebras, by Jean-Louis Koszul (see Lie algebra cohomology). It turned out to be a useful general construction in homological algebra. As a tool, its homology can be used to tell when a set of elements of a (local) ring is an M-regular sequence, and hence it can be used to prove basic facts about the depth of a module or ideal which is an algebraic notion of dimension that is related to but different from the geometric notion of Krull dimension.
We extend the group-theoretic notion of conditional flatness for a localization functor to any pointed category, and investigate it in the context of homological categories and of semi-abelian categories. In the presence of functorial fiberwise localizatio ...
CAMBRIDGE UNIV PRESS2023
In this thesis, we give a modern treatment of Dwyer's tame homotopy theory using the language of ∞-categories.We introduce the notion of tame spectra and show it has a concrete algebraic description.We then carry out a study of ∞-operads and ...
EPFL2022
The theory of persistence, which arises from topological data analysis, has been intensively studied in the one-parameter case both theoretically and in its applications. However, its extension to the multi-parameter case raises numerous difficulties, wher ...