In linear algebra, a coordinate vector is a representation of a vector as an ordered list of numbers (a tuple) that describes the vector in terms of a particular ordered basis. An easy example may be a position such as (5, 2, 1) in a 3-dimensional Cartesian coordinate system with the basis as the axes of this system. Coordinates are always specified relative to an ordered basis. Bases and their associated coordinate representations let one realize vector spaces and linear transformations concretely as column vectors, row vectors, and matrices; hence, they are useful in calculations.
The idea of a coordinate vector can also be used for infinite-dimensional vector spaces, as addressed below.
Let V be a vector space of dimension n over a field F and let
be an ordered basis for V. Then for every there is a unique linear combination of the basis vectors that equals :
The coordinate vector of relative to B is the sequence of coordinates
This is also called the representation of with respect to B, or the B representation of . The are called the coordinates of . The order of the basis becomes important here, since it determines the order in which the coefficients are listed in the coordinate vector.
Coordinate vectors of finite-dimensional vector spaces can be represented by matrices as column or row vectors. In the above notation, one can write
and
where is the transpose of the matrix .
We can mechanize the above transformation by defining a function , called the standard representation of V with respect to B, that takes every vector to its coordinate representation: . Then is a linear transformation from V to Fn. In fact, it is an isomorphism, and its inverse is simply
Alternatively, we could have defined to be the above function from the beginning, realized that is an isomorphism, and defined to be its inverse.
Let P3 be the space of all the algebraic polynomials of degree at most 3 (i.e. the highest exponent of x can be 3).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The microstructure of many alloys and ceramics are constituted of very fine intricate domains (variants) created by diffusive or displacive phase transformations. The course introduces the crystallogr
In mathematics, a matrix (plural matrices) is a rectangular array or table of numbers, symbols, or expressions, arranged in rows and columns, which is used to represent a mathematical object or a property of such an object. For example, is a matrix with two rows and three columns. This is often referred to as a "two by three matrix", a " matrix", or a matrix of dimension . Without further specifications, matrices represent linear maps, and allow explicit computations in linear algebra.
In mathematics, a Euclidean plane is a Euclidean space of dimension two, denoted E2. It is a geometric space in which two real numbers are required to determine the position of each point. It is an affine space, which includes in particular the concept of parallel lines. It has also metrical properties induced by a distance, which allows to define circles, and angle measurement. A Euclidean plane with a chosen Cartesian coordinate system is called a Cartesian plane.
In linear algebra, an eigenvector (ˈaɪgənˌvɛktər) or characteristic vector of a linear transformation is a nonzero vector that changes at most by a constant factor when that linear transformation is applied to it. The corresponding eigenvalue, often represented by , is the multiplying factor. Geometrically, a transformation matrix rotates, stretches, or shears the vectors it acts upon. The eigenvectors for a linear transformation matrix are the set of vectors that are only stretched, with no rotation or shear.
In this paper, we set the mathematical foundations of the Dynamical Low Rank Approximation (DLRA) method for high-dimensional stochastic differential equations. DLRA aims at approximating the solution as a linear combination of a small number of basis vect ...
This paper develops high-order accurate entropy stable (ES) adaptive moving mesh finite difference schemes for the two- and three-dimensional special relativistic hydrodynamic (RHD) and magnetohydrodynamic (RMHD) equations, which is the high-order accurate ...
ACADEMIC PRESS INC ELSEVIER SCIENCE2022
,
For a high dimensional problem, a randomized Gram-Schmidt (RGS) algorithm is beneficial in computational costs as well as numerical stability. We apply this dimension reduction technique by random sketching to Krylov subspace methods, e.g. to the generaliz ...