In logic, a true/false decision problem is decidable if there exists an effective method for deriving the correct answer. Zeroth-order logic (propositional logic) is decidable, whereas first-order and higher-order logic are not. Logical systems are decidable if membership in their set of logically valid formulas (or theorems) can be effectively determined. A theory (set of sentences closed under logical consequence) in a fixed logical system is decidable if there is an effective method for determining whether arbitrary formulas are included in the theory. Many important problems are undecidable, that is, it has been proven that no effective method for determining membership (returning a correct answer after finite, though possibly very long, time in all cases) can exist for them.
Each logical system comes with both a syntactic component, which among other things determines the notion of provability, and a semantic component, which determines the notion of logical validity. The logically valid formulas of a system are sometimes called the theorems of the system, especially in the context of first-order logic where Gödel's completeness theorem establishes the equivalence of semantic and syntactic consequence. In other settings, such as linear logic, the syntactic consequence (provability) relation may be used to define the theorems of a system.
A logical system is decidable if there is an effective method for determining whether arbitrary formulas are theorems of the logical system. For example, propositional logic is decidable, because the truth-table method can be used to determine whether an arbitrary propositional formula is logically valid.
First-order logic is not decidable in general; in particular, the set of logical validities in any signature that includes equality and at least one other predicate with two or more arguments is not decidable. Logical systems extending first-order logic, such as second-order logic and type theory, are also undecidable.
The validities of monadic predicate calculus with identity are decidable, however.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
:
Related courses (6)
Gödel incompleteness theorems and mathematical foundations of computer science
As a professional you will face unfamiliar challenges that will require you to think strategically. This course develops your strategic thinking by giving you a step-by-step process and actionable too
This course constitutes an introduction to theory of computation. It discusses the basic theoretical models of computing (finite automata, Turing machine), as well as, provides a solid and mathematica
Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the science of deductively valid inferences or logical truths. It studies how conclusions follow from premises due to the structure of arguments alone, independent of their topic and content. Informal logic is associated with informal fallacies, critical thinking, and argumentation theory. It examines arguments expressed in natural language while formal logic uses formal language.
In mathematical logic, a theory (also called a formal theory) is a set of sentences in a formal language. In most scenarios a deductive system is first understood from context, after which an element of a deductively closed theory is then called a theorem of the theory. In many deductive systems there is usually a subset that is called "the set of axioms" of the theory , in which case the deductive system is also called an "axiomatic system". By definition, every axiom is automatically a theorem.
Presburger arithmetic is the first-order theory of the natural numbers with addition, named in honor of Mojżesz Presburger, who introduced it in 1929. The signature of Presburger arithmetic contains only the addition operation and equality, omitting the multiplication operation entirely. The axioms include a schema of induction. Presburger arithmetic is much weaker than Peano arithmetic, which includes both addition and multiplication operations. Unlike Peano arithmetic, Presburger arithmetic is a decidable theory.
With every smartphone and computer now boasting multiple processors, the use of functional ideas to facilitate parallel programming is becoming increasingly widespread. In this course, you'll learn th
With every smartphone and computer now boasting multiple processors, the use of functional ideas to facilitate parallel programming is becoming increasingly widespread. In this course, you'll learn th
With every smartphone and computer now boasting multiple processors, the use of functional ideas to facilitate parallel programming is becoming increasingly widespread. In this course, you'll learn th
We study the decision problem for the existential fragment of the theory of power structures. We prove complexity results that parallel the decidability results of Feferman-Vaught for the theories of product structures thereby showing that the construction ...
EPFL2023
,
The popular isolation level multiversion Read Committed (RC) exchanges some of the strong guarantees of serializability for increased transaction throughput. Nevertheless, transaction workloads can sometimes be executed under RC while still guaranteeing se ...
We present a quasilinear time algorithm to decide the word problem on a natural algebraic structures we call orthocomplemented bisemilattices, a subtheory of boolean algebra. We use as a base a variation of Hopcroft, Ullman and Aho algorithm for tree isomo ...