In organic chemistry, a carboxylic acid is an organic acid that contains a carboxyl group () attached to an R-group. The general formula of a carboxylic acid is or , with R referring to the alkyl, alkenyl, aryl, or other group. Carboxylic acids occur widely. Important examples include the amino acids and fatty acids. Deprotonation of a carboxylic acid gives a carboxylate anion.
Carboxylic acids are commonly identified by their trivial names. They often have the suffix -ic acid. IUPAC-recommended names also exist; in this system, carboxylic acids have an -oic acid suffix. For example, butyric acid (C3H7CO2H) is butanoic acid by IUPAC guidelines. For nomenclature of complex molecules containing a carboxylic acid, the carboxyl can be considered position one of the parent chain even if there are other substituents, such as 3-chloropropanoic acid. Alternately, it can be named as a "carboxy" or "carboxylic acid" substituent on another parent structure, such as 2-carboxyfuran.
The carboxylate anion (R–COO− or RCO2−) of a carboxylic acid is usually named with the suffix -ate, in keeping with the general pattern of -ic acid and -ate for a conjugate acid and its conjugate base, respectively. For example, the conjugate base of acetic acid is acetate.
Carbonic acid, which occurs in bicarbonate buffer systems in nature, is not generally classed as one of the carboxylic acids, despite that it has a moiety that looks like a COOH group.
Carboxylic acids are polar. Because they are both hydrogen-bond acceptors (the carbonyl –C=O) and hydrogen-bond donors (the hydroxyl –OH), they also participate in hydrogen bonding. Together, the hydroxyl and carbonyl group form the functional group carboxyl. Carboxylic acids usually exist as dimers in nonpolar media due to their tendency to "self-associate". Smaller carboxylic acids (1 to 5 carbons) are soluble in water, whereas bigger carboxylic acids have limited solubility due to the increasing hydrophobic nature of the alkyl chain. These longer chain acids tend to be soluble in less-polar solvents such as ethers and alcohols.
Categories
Official source
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
"Microbiology for engineers" covers the main microbial processes that take place in the environment and in treatment systems. It presents elemental cycles that are catalyzed by microorganisms and that
The course will deliver basic knowledge on the principles of food fermentation and enzyme technology. The course will also present benefits that food biotechnology can bring in terms of Nutrition & He
The student will learn the important processes that control the transport and transformation of organic chemicals in the environment, as well as the formulation and solution of quantitative models to
Short-chain fatty acids (SCFAs) are fatty acids of two to six carbon atoms. The SCFAs lower limit is interpreted differently, either with 1, 2, 3 or 4 carbon atoms. Derived from intestinal microbial fermentation of indigestible foods, SCFAs in human gut are acetic, propionic, and butyric acid. They are the main energy source of colonocytes, making them crucial to gastrointestinal health. SCFAs all possess varying degrees of water solubility, which distinguishes them from longer chain fatty acids that are immiscible.
Hydrolysis (haɪˈdrɒlɪsɪs; ) is any chemical reaction in which a molecule of water breaks one or more chemical bonds. The term is used broadly for substitution, elimination, and solvation reactions in which water is the nucleophile. Biological hydrolysis is the cleavage of biomolecules where a water molecule is consumed to effect the separation of a larger molecule into component parts. When a carbohydrate is broken into its component sugar molecules by hydrolysis (e.g.
In chemistry, a dehydration reaction is a chemical reaction that involves the loss of water from the reacting molecule or ion. Dehydration reactions are common processes, the reverse of a hydration reaction. The classic example of a dehydration reaction is the Fischer esterification, which involves treating a carboxylic acid with an alcohol to give an ester RCO2H + R′OH RCO2R′ + H2O Often such reactions require the presence of a dehydrating agent, i.e. a substance that reacts with water.
Explores the microbial transformations and health benefits of fermented foods, emphasizing their potential as delivery vehicles for probiotics to underserved communities.
Metabolism (məˈtæbəlɪzəm, from μεταβολή metabolē, "change") is the set of life-sustaining chemical reactions in organisms. The three main functions of metabolism are: the conversion of the energy in food to energy available to run cellular processes; the conversion of food to building blocks for proteins, lipids, nucleic acids, and some carbohydrates; and the elimination of metabolic wastes. These enzyme-catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments.
In chemistry, many authors consider an organic compound to be any chemical compound that contains carbon-hydrogen or carbon-carbon bonds, however, some authors consider an organic compound to be any chemical compound that contains carbon. The definition of "organic" versus "inorganic" varies from author to author, and is a topic of debate. For example, methane () is considered organic, but whether some other carbon-containing compounds are organic or inorganic varies from author to author, for example halides of carbon without carbon-hydrogen and carbon-carbon bonds (e.
A carbohydrate (ˌkɑːrboʊˈhaɪdreɪt) is a biomolecule consisting of carbon (C), hydrogen (H) and oxygen (O) atoms, usually with a hydrogen–oxygen atom ratio of 2:1 (as in water) and thus with the empirical formula (where m may or may not be different from n), which does not mean the H has covalent bonds with O (for example with , H has a covalent bond with C but not with O). However, not all carbohydrates conform to this precise stoichiometric definition (e.g.
The current reliance on limited petrochemical resources and the resulting ecological outcomes have made the exploration of alternative chemical and energy feedstocks invaluable. As such, the development of sustainable processes with a less harmful total en ...
The production of volatile fatty acids (VFAs) represents a relevant option to valorize municipal wastewater (MWW). In this context, different capture technologies can be used to recover organic carbon from wastewater in form of solids, while pre-treatment ...
Metastasis is the process by which cancer cells from the primary tumor travel through the blood stream to generate a secondary tumor site in a distant organ. Although very few cells are able to make this journey, the resulting effects are dire since most c ...