Real coordinate spaceIn mathematics, the real coordinate space of dimension n, denoted Rn or , is the set of the n-tuples of real numbers, that is the set of all sequences of n real numbers. Special cases are called the real line R1 and the real coordinate plane R2. With component-wise addition and scalar multiplication, it is a real vector space, and its elements are called coordinate vectors. The coordinates over any basis of the elements of a real vector space form a real coordinate space of the same dimension as that of the vector space.
Bilinear mapIn mathematics, a bilinear map is a function combining elements of two vector spaces to yield an element of a third vector space, and is linear in each of its arguments. Matrix multiplication is an example. Let and be three vector spaces over the same base field . A bilinear map is a function such that for all , the map is a linear map from to and for all , the map is a linear map from to In other words, when we hold the first entry of the bilinear map fixed while letting the second entry vary, the result is a linear operator, and similarly for when we hold the second entry fixed.
Minimal polynomial (linear algebra)In linear algebra, the minimal polynomial μA of an n × n matrix A over a field F is the monic polynomial P over F of least degree such that P(A) = 0. Any other polynomial Q with Q(A) = 0 is a (polynomial) multiple of μA. The following three statements are equivalent: λ is a root of μA, λ is a root of the characteristic polynomial χA of A, λ is an eigenvalue of matrix A. The multiplicity of a root λ of μA is the largest power m such that ker((A − λIn)m) strictly contains ker((A − λIn)m−1).
Row and column vectorsIn linear algebra, a column vector with m elements is an matrix consisting of a single column of m entries, for example, Similarly, a row vector is a matrix for some n, consisting of a single row of n entries, (Throughout this article, boldface is used for both row and column vectors.) The transpose (indicated by T) of any row vector is a column vector, and the transpose of any column vector is a row vector: and The set of all row vectors with n entries in a given field (such as the real numbers) forms an n-dimensional vector space; similarly, the set of all column vectors with m entries forms an m-dimensional vector space.
Dimension (vector space)In mathematics, the dimension of a vector space V is the cardinality (i.e., the number of vectors) of a basis of V over its base field. It is sometimes called Hamel dimension (after Georg Hamel) or algebraic dimension to distinguish it from other types of dimension. For every vector space there exists a basis, and all bases of a vector space have equal cardinality; as a result, the dimension of a vector space is uniquely defined. We say is if the dimension of is finite, and if its dimension is infinite.
Row and column spacesIn linear algebra, the column space (also called the range or ) of a matrix A is the span (set of all possible linear combinations) of its column vectors. The column space of a matrix is the or range of the corresponding matrix transformation. Let be a field. The column space of an m × n matrix with components from is a linear subspace of the m-space . The dimension of the column space is called the rank of the matrix and is at most min(m, n). A definition for matrices over a ring is also possible.
Squeeze mappingIn linear algebra, a squeeze mapping, also called a squeeze transformation, is a type of linear map that preserves Euclidean area of regions in the Cartesian plane, but is not a rotation or shear mapping. For a fixed positive real number a, the mapping is the squeeze mapping with parameter a. Since is a hyperbola, if u = ax and v = y/a, then uv = xy and the points of the image of the squeeze mapping are on the same hyperbola as (x,y) is.
Absolute valueIn mathematics, the absolute value or modulus of a real number , denoted , is the non-negative value of without regard to its sign. Namely, if is a positive number, and if is negative (in which case negating makes positive), and . For example, the absolute value of 3 is 3, and the absolute value of −3 is also 3. The absolute value of a number may be thought of as its distance from zero. Generalisations of the absolute value for real numbers occur in a wide variety of mathematical settings.
ManifoldIn mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an -dimensional manifold, or -manifold for short, is a topological space with the property that each point has a neighborhood that is homeomorphic to an open subset of -dimensional Euclidean space. One-dimensional manifolds include lines and circles, but not lemniscates. Two-dimensional manifolds are also called surfaces. Examples include the plane, the sphere, and the torus, and also the Klein bottle and real projective plane.
Geometric algebraIn mathematics, a geometric algebra (also known as a real Clifford algebra) is an extension of elementary algebra to work with geometrical objects such as vectors. Geometric algebra is built out of two fundamental operations, addition and the geometric product. Multiplication of vectors results in higher-dimensional objects called multivectors. Compared to other formalisms for manipulating geometric objects, geometric algebra is noteworthy for supporting vector division and addition of objects of different dimensions.