Category

Topics in electromechanics

Summary
In engineering, electromechanics combines processes and procedures drawn from electrical engineering and mechanical engineering. Electromechanics focuses on the interaction of electrical and mechanical systems as a whole and how the two systems interact with each other. This process is especially prominent in systems such as those of DC or AC rotating electrical machines which can be designed and operated to generate power from a mechanical process (generator) or used to power a mechanical effect (motor). Electrical engineering in this context also encompasses electronics engineering. Electromechanical devices are ones which have both electrical and mechanical processes. Strictly speaking, a manually operated switch is an electromechanical component due to the mechanical movement causing an electrical output. Though this is true, the term is usually understood to refer to devices which involve an electrical signal to create mechanical movement, or vice versa mechanical movement to create an electric signal. Often involving electromagnetic principles such as in relays, which allow a voltage or current to control another, usually isolated circuit voltage or current by mechanically switching sets of contacts, and solenoids, by which a voltage can actuate a moving linkage as in solenoid valves. Before the development of modern electronics, electromechanical devices were widely used in complicated subsystems of parts, including electric typewriters, teleprinters, clocks, initial television systems, and the very early electromechanical digital computers. Solid-state electronics have replaced electromechanics in many applications. The first electric motor was invented in 1822 by Michael Faraday. The motor was developed only a year after Hans Christian Ørsted discovered that the flow of electric current creates a proportional magnetic field. This early motor was simply a wire partially submerged into a glass of mercury with a magnet at the bottom.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.